Refine Your Search

Topic

Search Results

Technical Paper

Combustion and Emission Characteristics of an Ammonia-Hydrogen Engine under Passive- and Active-Jet Ignition

2024-04-09
2024-01-2109
In the context of carbon neutrality, ammonia is considered a zero-carbon fuel with potential applications in the transportation sector. However, its high ignition energy, low flame speed, and high natural temperature, indicative of low reactivity, make it challenging to be applied as a sole fuel in engines. In such a scenario, the use of another zero-carbon and highly reactive fuel, hydrogen, becomes necessary to enhance the combustion of ammonia. Furthermore, jet ignition, a method known for improving engine combustion performance, may also hold potential for enhancing the combustion performance of ammonia engines. To explore the applicability of jet ignition in engines, this study conducted experimental research on a single-cylinder engine. Two ignition methods were employed: passive jet ignition of premixed ammonia-hydrogen at a compression ratio of 11.5, and active jet ignition of pure ammonia using hydrogen jet flame at a compression ratio of 17.3.
Technical Paper

Risk field enhanced game theoretic model for interpretable and consistent lane-changing decision makings

2024-04-09
2024-01-2566
This paper presents an integrated modeling approach for real-time discretionary lane-changing decisions by autonomous vehicles, aiming to achieve human-like behavior. The approach incorporates a two-player normal-form game and a novel risk field method. The normal-form game represents the strategic interactions among traffic participants. It captures the trade-offs between lane-changing benefits and risks based on vehicle motion states during a lane change. By continuously determining the Nash equilibrium of the game at each time step, the model decides when it is appropriate to change the lane. A novel risk field method is integrated with the game to model risks in the game pay-offs. The risk field introduces regions along the desired target lane with different time headway ranges and risk weights, capturing traffic participants' complex risk perceptions and considerations in lane-changing scenarios.
Technical Paper

Numerical Simulation of Ammonia-Hydrogen Engine Using Low-Pressure Direct Injection (LP-DI)

2024-04-09
2024-01-2118
Ammonia (NH3), a zero-carbon fuel, has great potential for internal combustion engine development. However, its high ignition energy, low laminar burning velocity, narrow range of flammability limits, and high latent heat of vaporization are not conducive for engine application. This paper numerically investigates the feasibility of utilizing ammonia in a heavy-duty diesel engine, specifically through low-pressure direct injection (LP-DI) of hydrogen to ignite ammonia combustion. Due to the lack of a well-corresponding mechanism for the operating conditions of ammonia-hydrogen engines, this study serves only as a trend-oriented prediction. The paper compares the engine's combustion and emission performance by optimizing four critical parameters: excess air ratio, hydrogen energy ratio, ignition timing, and hydrogen injection timing. The results reveal that excessively high hydrogen energy ratios lead to an advanced combustion phase, reducing indicated thermal efficiency.
Technical Paper

Effects of Octane Number and Sensitivity on Combustion of Jet Ignition Engine

2022-03-29
2022-01-0435
Octane number (ON) and octane sensitivity (S), the fuel anti-knock indices, are critical for the design of advanced jet ignition engines. In this study, ten fuels with different research octane number (RON) and varying S were formulated based on ethanol reference fuels (ERFs) to investigate the effect of S on combustion of jet ignition engine. To fully understand S effects, the combustion characteristics under EGR dilution and lean burn were further investigated. The results indicated that increasing S resulted in higher reactivity with shorter ignition delay and combustion duration. The increase of reactivity led to heavier knocking intensity. The competition between the flame speed and the reactivity of the mixture determined the auto-ignition fraction of mixture and the knocking onset crank angle as S varied. Medium S (S=3) was helpful to improve the combustion speed, reduce the auto-ignition fraction of mixture and retard the knocking onset crank angle.
Technical Paper

Approximate Dynamic Programming Real-Time Control Design for Plug-In Hybrid Electric Vehicles

2021-12-31
2021-01-5110
A real-time control is proposed for Plug-in Hybrid Electric Vehicles (PHEVs) based on the optimal Dynamic Programming (DP) trajectories in this study. Firstly, the DP is used to solve the Driving Cycle to obtain the optimal trajectories and controls, and the Model-Based Calibration tool (MBC) is used to generate the optimal Maps for the given optimal trajectories. Secondly, a Feedback Energy Management System (FMES) is built with State of Charge (SoC) as the feedback variable, which takes into account the Charge and Discharge Reaction (CDR) of the battery.
Technical Paper

A Trajectory Planning Method for Different Drivers in the Curve Condition

2021-12-15
2021-01-7006
Lane Centering Control System (LCCS) is a lateral Advanced Driving Assistance System (ADAS) with low acceptance. One of the main reasons is that the centering trajectory can’t satisfy different drivers, which is more obvious in the curve condition. So LCCS adaptive to different drivers needs to be designed. The trajectory planning module is an important part for LCCS. It generates trajectory according to the road information for the vehicle control module to track. This paper uses road information obtained from the scenario established in Prescan, and the trajectory planning method proposed can generate trajectories for different drivers in the curve condition. To achieve the goal, this paper proposes a trajectory planning method which contains lateral path planning and longitudinal speed planning. Firstly, the overall strategy of “road equidistant segments division” is used to describe the road information.
Technical Paper

Analysis of Small-Scale Fading Characteristics of V2V Communication Channel in Expressway under Construction

2020-12-30
2020-01-5236
Vehicle-to-vehicle (V2V) communication is an important part of intelligent transportation system. With the vigorous development of expressway construction, it is of great significance to study the propagation characteristics of V2V communication channels in the scene of expressway under construction. This paper describes in detail the V2V broadband channel measurement activity carried out on the A96 expressway in the suburb of Munich, Germany. Based on the measured data, the variation of signal receiving power while the vehicle was moving is analyzed. We focus on the small-scale fading characteristics of expressway sections under construction in the C-band. The results show that the magnitude of received signal varies rapidly while vehicles are moving. Comparing the measurement data with theoretical distributions, it has been found that the magnitudes of measurement data on the expressway under construction fit the best to the Rice distribution.
Technical Paper

Research on Vehicle Recognition Based on Unpacking 3D Bounding Boxes of Monocular Camera in Traffic Scene

2020-12-30
2020-01-5196
Currently, most of vehicle recognition methods are realized by deep convolutional neural networks (DCNNs) with input of images directly as training data. Due to the factor of perspective distortion and scale change of images taken by monocular camera, a large number of multi-scale images need to be used for training, and physical information of vehicles cannot be obtained at the same time. In order to improve the above problems, we present a method of vehicle recognition based on unpacking 3D bounding boxes in this paper. Firstly, camera calibration information and geometric constraints are used to build 3D bounding boxes around vehicles in monocular projection. Then, the 3D bounding boxes are unpacked to obtain 3D normalized spatial data without perspective distortion. Finally, VGG-16 is chosen as the backbone of our network, the output of which can be divided into five common vehicle types including hatchback, sedan, SUV, truck and bus.
Technical Paper

LiDAR-Based High-Accuracy Parking Slot Search, Detection, and Tracking

2020-12-29
2020-01-5168
The accuracy of parking slot detection is a challenge for the safety of the Automated Valet Parking (AVP), while traditional methods of range sensor-based parking slot detection have mostly focused on the detection rate in a scenario, where the ego-vehicle must pass by the slot. This paper uses three-dimensional Light Detection And Ranging (3D LiDAR) to efficiently search parking slots around without passing by them and highlights the accuracy of detecting and tracking. For this purpose, a universal process of 3D LiDAR-based high-accuracy slot perception is proposed in this paper. First, the method Minimum Spanning Tree (MST) is applied to sort obstacles, and Separating Axis Theorem (SAT) are applied to the bounding boxes of obstacles in the bird’s-eye view, to find a free space between two adjacent obstacles. These bounding boxes are obtained by using common point cloud processing methods.
Technical Paper

Multi-target Tracking Algorithm with Adaptive Motion Model for Autonomous Urban Driving

2020-12-29
2020-01-5167
Since situational awareness is crucial for autonomous driving in urban environments, multi-target tracking has become an increasingly popular research topic during the last several years. For autonomous driving in urban environments, cars and pedestrians are the two main types of obstacles, and their motion characteristics are not the same. While in the current related multi-target tracking research, the same motion model (such as Constant Velocity model [CV]) or motion model set (such as CV combined with Constant Acceleration model [CA]) is mostly used to track different types of obstacles simultaneously. Besides, in current research, regular motion models are mostly adopted to track pedestrians, such as CV, CA, and so on, the uncertainty in pedestrian motion is not well considered.
Technical Paper

Lookie Here! Designing Directional User Indicators across Displays in Conditional Driving Automation

2020-04-14
2020-01-1201
With the advent of autonomous vehicles, the human driver’s attention will slowly be relinquished from the driving task. It will allow drivers to participate in more non-driving related activities, such as engaging with information and entertainment systems. However, the automated driving system would need to notify the driver of upcoming points-of-interest on the road when the driver’s attention is focused on their screen rather than on the road or driving display. In this paper, we investigated whether providing directional alerts for an upcoming point-of-interest (POI) in or around the user’s active screen can augment their ability in relocating their visual attention to the POI on the road when traveling in a vehicle with Conditional Driving Automation. A user study (N = 15) was conducted to compare solutions for alerts that presented themselves in the participants’ central and peripheral field of view.
Technical Paper

Adaptive Design of Driver Steering Override Characteristics for LKAS

2019-11-04
2019-01-5030
Lane Keeping Assistance System (LKAS) is a typical lateral driver assistance system with low acceptance. One of the main reasons is that fixed parameters cannot satisfy individual differences. So LKAS adaptive to driver characteristics needs to be designed. Driver Steering Override (DSO) process is an important process of LKAS. It happens when contradiction between driver’s intention and system behavior occurs. As feeling of overriding will affect the overall experience of using LKAS, the design of DSO characteristics is worthy of attention. This research provided an adaptive design scheme aiming at DSO characteristics for LKAS by building Driver Preference Model (DPM) based on simulator test data from preliminary experiments. The DPM was to represent the relationship between driver characteristics indices and driver preferred system characteristics indices. So that new drivers’ preference can be predicted by DPM based on their own daily driving data with LKAS switched off.
Technical Paper

Towards High Accuracy Parking Slot Detection for Automated Valet Parking System

2019-11-04
2019-01-5061
Highly accurate parking slot detection methods are crucial for Automated Valet Parking (AVP) systems, to meet their demanding safety and functional requirements. While previous efforts have mostly focused on the algorithms’ capabilities to detect different types of slots under varying conditions, i.e. the detection rate, their accuracy has received little attention at this time. This paper highlights the importance of trustworthy slot detection methods, which address both the detection rate and the detection accuracy. To achieve this goal, an accurate slot detection method and a reliable ground-truth slot measurement method have been proposed in this paper. First, based on a 2D laser range finder, datapoints of obstacle vehicles on both sides of a slot have been collected and preprocessed. Second, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm has been improved to efficiently cluster these unevenly-distributed datapoints.
Technical Paper

Study on Robust Motion Planning Method for Automatic Parking Assist System Based on Neural Network and Tree Search

2019-11-04
2019-01-5059
Automatic Parking Assist System (APAS) is an important part of Advanced Driver Assistance System (ADAS). It frees drivers from the burden of maneuvering a vehicle into a narrow parking space. This paper deals with the motion planning, a key issue of APAS, for vehicles in automatic parking. Planning module should guarantee the robustness to various initial postures and ensure that the vehicle is parked symmetrically in the center of the parking slot. However, current planning methods can’t meet both requirements well. To meet the aforementioned requirements, a method combining neural network and Monte-Carlo Tree Search (MCTS) is adopted in this work. From a driver’s perspective, different initial postures imply different parking strategies. In order to achieve the robustness to diverse initial postures, a natural idea is to train a model that can learn various strategies.
Technical Paper

Study on Important Indices Related to Driver Feelings for LKA Intervention Process

2018-08-07
2018-01-1586
Lane Keeping Assistance (LKA) system is a very important part in Advanced Driver Assistance Systems (ADAS). It prevents a vehicle from departing out of the lane by exerting intervention. But an inappropriate performance during LKA intervention makes driver feel uncomfortable. The intervention of LKA can be divided into 3 parts: intervention timing, intervention process and intervention ending. Many researches have studied about the intervention timing and ending, but factors during intervention process also affect driver feelings a lot, such as yaw rate and steering wheel velocity. To increase driver’s acceptance of LKA, objective and subjective tests were designed and conducted to explore important indices which are highly correlated with the driver feelings. Different kinds of LKA controller control intervention process in different ways. Therefore, it’s very important to describe the intervention process uniformly and objectively.
Technical Paper

Evaluation and Optimization of Driver Steering Override Strategy for LKAS Based on Driver’s Acceptability

2018-08-07
2018-01-1631
In order to satisfy design requirements of Lane Keeping Assistance System (LKAS), a Driver Steering Override (DSO) strategy is necessary for driver’s interaction with the assistance system. The assistance system can be overridden by the strategy in case of lane change, obstacle avoidance and other emergency situations. However, evaluation and optimization of the DSO strategy for LKAS cannot easily be completed quantitatively considering driver’s acceptability. In this research, firstly subjective and objective evaluation experiment is designed. Secondly, correlations between the subjective and the objective evaluation results are established by using regression analysis. Finally, based on the correlations established previously, the optimal performance of DSO strategy is obtained by setting the desired comprehensive evaluation ratings as the optimized goal.
Technical Paper

Driver Lane Keeping Characteristic Indices for Personalized Lane Keeping Assistance System

2017-09-23
2017-01-1982
In the recent years, the interaction between human driver and Advanced Driver Assistance System (ADAS) has gradually aroused people’s concern. As a result, the concept of personalized ADAS is being put forward. As an important system of ADAS, Lane Keeping Assistance System (LKAS) also attracts great attention. To achieve personalized LKAS, driver lane keeping characteristic (DLKC) indices which could distinguish different driver lane keeping behavior should be researched. However, there are few researches on DLKC indices for personalized LKAS. Although there are many researches on modeling driver steering behavior, these researches are not sufficient to obtain DLKC indices. One reason is that most of researches are for double lane change behavior which is different from driver lane keeping behavior. The other reason is that the researches on driver lane keeping behavior only provide model structure and rarely discuss identification procedure such as how to select suitable data.
Technical Paper

Longitudinal Planning and Control Method for Autonomous Vehicles Based on A New Potential Field Model

2017-09-23
2017-01-1955
An integrated automatic driving system consists of perception, planning and control. As one of the key components of an autonomous driving system, the longitudinal planning module guides the vehicle to accelerate or decelerate automatically on the roads. A complete longitudinal planning module is supposed to consider the flexibility to various scenarios and multi-objective optimization including safety, comfort and efficiency. However, most of the current longitudinal planning methods can not meet all the requirements above. In order to satisfy the demands mentioned above, a new Potential Field (PF) based longitudinal planning method is presented in this paper. Firstly, a PF model is constructed to depict the potential risk of surrounding traffic entities, including obstacles and roads. The shape of each potential field is closely related to the property of the corresponding traffic entity.
Journal Article

Study on Path Following Control Method for Automatic Parking System Based on LQR

2016-09-14
2016-01-1881
The Automatic Parking System (APS) is consisted of environmental perception, path planning and path following. As one of the key technologies in APS, path following module controls the lateral movement of the vehicle during the parking process. A mature path following module should meet all the performance indexes of high precision, fast convergence, convenient tuning and good passenger comfort. However, the current path following control methods can only meet parts of the performance indexes, instead of all. In order to satisfy all the performance indexes above, a path following control method based on Linear Quadratic Regulator (LQR) is proposed in this paper. Firstly, the linearization of the non-linear vehicle kinematic model was done to establish a linear system of the path following error. Secondly, LQR optimal control was used to achieve the closed-loop control of this linear system to guarantee its stability and fast convergence property.
Technical Paper

An ADAS-Oriented Virtual EPS Platform Based on the Force Feedback Actuator of the Steer-by-Wire System

2016-09-14
2016-01-1905
Electric Power Steering (EPS) is the actuator of several lateral-dynamic-related Advanced Driver Assistance Systems (ADAS). A driving simulator with EPS will be much helpful for the ADAS development. However, if a real EPS is used in the driving simulator, it is quite difficult to realize the road reaction force accurately and responsively. To overcome this weakness, a virtual EPS platform is established. The virtual EPS platform contains two parts: one is the vehicle and EPS model, the other is the force feedback actuator (FFA) of the Steer-by-Wire (SBW) system. The FFA is an interface between the driver and the EPS/vehicle model. The reactive torque of the FFA is obtained based on the models. Meanwhile, the input of the EPS model is the steering angle of the FFA. Comparing to a real EPS, the virtual EPS platform has a problem of instability because of the actuator lag of the FFA. Therefore, a damping control method is applied to make the system stable.
X