Refine Your Search

Topic

Search Results

Technical Paper

On-Road Testing to Characterize Speed-Following Behavior in Production Automated Vehicles

2024-04-09
2024-01-1963
A fully instrumented Tesla Model 3 was used to collect thousands of hours of real-world automated driving data, encompassing both Autopilot and Full Self-Driving modes. This comprehensive dataset included vehicle operational parameters from the data busses, capturing details such as powertrain performance, energy consumption, and the control of advanced driver assistance systems (ADAS). Additionally, interactions with the surrounding traffic were recorded using a perception kit developed in-house equipped with LIDAR and a 360-degree camera system. We collected the data as part of a larger program to assess energy-efficient driving behavior of production connected and automated vehicles. One important aspect of characterizing the test vehicle is predicting its car-following behavior. Using both uncontrolled on-road tests and dedicated tests with a lead car performing set speed maneuvers, we tuned conventional adaptive cruise control (ACC) equations to fit the vehicle’s behavior.
Journal Article

Empirical Equations of Changes in Aerodynamic Drag Based on Direct On-Track Road Load Measurements for Multi-Vehicle Platoons

2023-04-11
2023-01-0830
Considerable effort is currently being focused on emerging vehicle automation technologies. Engineers are making great strides in improving safety and reliability, but they are also exploring how these new technologies can enhance energy efficiency. This study focuses on the changes in aerodynamic drag associated with coordinated driving scenarios, also known as “platooning.” To draw sound conclusions in simulation or experimental studies where vehicle speed and gaps are controlled and coordinated, it is necessary to have a robust quantitative understanding of the road load changes associated with each vehicle in the platoon. Many variables affect the drag of each vehicle, such as each gap length, vehicle type/size, vehicle order and number of vehicles in the platoon. The effect is generally understood, but there are limited supporting data in the literature from actual test vehicles driving in formation.
Journal Article

Eco-Driving Strategies for Different Powertrain Types and Scenarios

2019-10-22
2019-01-2608
Connected automated vehicles (CAVs) are quickly becoming a reality, and their potential ability to communicate with each other and the infrastructure around them has big potential impacts on future mobility systems. Perhaps one of the most important impacts could be on network wide energy consumption. A lot of research has already been performed on the topic of eco-driving and the potential fuel and energy consumption benefits for CAVs. However, most of the efforts to date have been based on simulation studies only, and have only considered conventional vehicle powertrains. In this study, experimental data is presented for the potential eco-driving benefits of two specific intersection approach scenarios, for four different powertrain types.
Technical Paper

On-Track Measurement of Road Load Changes in Two Close-Following Vehicles: Methods and Results

2019-04-02
2019-01-0755
As emerging automated vehicle technology is making advances in safety and reliability, engineers are also exploring improvements in energy efficiency with this new paradigm. Powertrain efficiency receives due attention, but also impactful is finding ways to reduce driving losses in coordinated-driving scenarios. Efforts focused on simulation to quantify road load improvements require a sufficient amount of background validation work to support them. This study uses a practical approach to directly quantify road load changes by testing the coordinated driving of two vehicles on a test track at various speeds (64, 88, 113 km/h) and vehicle time gaps (0.3 to 1.3 s). Axle torque sensors were used to directly measure the load required to maintain steady-state speeds while following a lead vehicle at various gap distances.
Technical Paper

Investigating Steady-State Road Load Determination Methods for Electrified Vehicles and Coordinated Driving (Platooning)

2018-04-03
2018-01-0649
Reductions in vehicle drive losses are as important to improving fuel economy as increases in powertrain efficiencies. In order to measure vehicle fuel economy, chassis dynamometer testing relies on accurate road load determinations. Road load is currently determined (with some exceptions) using established test track coastdown testing procedures. Because new vehicle technologies and usage cases challenge the accuracy and applicability of these procedures, on-road experiments were conducted using axle torque sensors to address the suitability of the test procedures in determining vehicle road loads in specific cases. Whereas coastdown testing can use vehicle deceleration to determine load, steady-state testing can offer advantages in validating road load coefficients for vehicles with no mechanical neutral gear (such as plug-in hybrid and electric vehicles).
Journal Article

Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles

2016-04-05
2016-01-0236
It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
Technical Paper

Carbureted SI Engine Air Flow Measurements

2016-04-05
2016-01-1082
Measurement of internal combustion engine air flow is challenging due to the required modification of the intake system and subsequent change in the air flow pattern. In this paper, various surge tank volumes were investigated to improve the accuracy of measuring air flow rate into a 674-cm3, four-stroke, liquid-cooled, internal combustion engine. According to the experimental results, when the venturi meter is used to measure the intake air flow rate, an air surge tank is required to be installed downstream of the venturi to smoothen the air flow. Moreover, test results revealed that increasing air surge tank volume beyond a limit could have a negative effect on the engine performance parameters especially in carbureted engines where controlling AFR is difficult. Although the air flow rate into the engine changed with increasing tank volume, the air-fuel ratio was leaner for smaller tank volumes.
Technical Paper

Air-to-Fuel Ratio Calculation Methods for Oxygenated Fuels in Two-Stroke Engines

2015-04-14
2015-01-0965
In 1990, Roy Douglas developed an analytical method to calculate the global air-to-fuel ratio of a two-stroke engine from exhaust gas emissions. While this method has considerable application to two-stroke engines, it does not permit the calculation of air-to-fuel ratios for oxygenated fuels. This study proposed modifications to the Roy Douglas method such that it can be applied to oxygenated fuels. The ISO #16183 standard, the modified Spindt method, and the Brettschneider method were used to evaluate the modifications to the Roy Douglas method. In addition, a trapped air-to-fuel ratio, appropriate for two-stroke engines, was also modified to incorporate oxygenated fuels. To validate the modified calculation method, tests were performed using a two-stroke carbureted and two-stroke direct injected marine outboard engine over a five-mode marine test cycle running indolene and low level blends of ethanol and iso-butanol fuels.
Technical Paper

Performance and Efficiency Assessment of a Production CNG Vehicle Compared to Its Gasoline Counterpart

2014-10-13
2014-01-2694
Two modern light-duty passenger vehicles were selected for chassis dynamometer testing to evaluate differences in performance end efficiency resulting from CNG and gasoline combustion in a vehicle-based context. The vehicles were chosen to be as similar as possible apart from fuel type, sharing similar test weights and identical driveline configurations. Both vehicles were tested over several chassis dynamometer driving cycles, where it was found that the CNG vehicle exhibited 3-9% lower fuel economy than the gasoline-fueled subject. Performance tests were also conducted, where the CNG vehicle's lower tractive effort capability and longer acceleration times were consistent with the lower rated torque and power of its engine as compared to the gasoline model. The vehicles were also tested using quasi-steady-state chassis dynamometer techniques, wherein a series of engine operating points were studied.
Journal Article

A Comparison of Cold-Start Behavior and its Impact on Fuel Economy for Advanced Technology Vehicles

2014-04-01
2014-01-1375
Vehicle operation during cold-start powertrain conditions can have a significant impact on drivability, fuel economy and tailpipe emissions in modern passenger vehicles. As efforts continue to maximize fuel economy in passenger vehicles, considerable engineering resources are being spent in order to reduce the consumption penalties incurred shortly after engine start and during powertrain warmup while maintaining suitably low levels of tailpipe emissions. Engine downsizing, advanced transmissions and hybrid-electric architecture can each have an appreciable effect on cold-start strategy and its impact on fuel economy. This work seeks to explore the cold-start strategy of several passenger vehicles with different powertrain architectures and to understand the resulting fuel economy impact relative to warm powertrain operation. To this end, four vehicles were chosen with different powertrain architectures.
Technical Paper

Impact of Blending Gasoline with Isobutanol Compared to Ethanol on Efficiency, Performance and Emissions of a Recreational Marine 4-Stroke Engine

2014-04-01
2014-01-1230
This study evaluates iso-butanol as a pathway to introduce higher levels of alternative fuels for recreational marine engine applications compared to ethanol. Butanol, a 4-carbon alcohol, has an energy density closer to gasoline than ethanol. Isobutanol at 16 vol% blend level in gasoline (iB16) exhibits energy content as well as oxygen content identical to E10. Tests with these two blends, as well as indolene as a reference fuel, were conducted on a Mercury 90 HP, 4-stroke outboard engine featuring computer controlled sequential multi-port Electronic Fuel Injection (EFI). The test matrix included full load curves as well as the 5-mode steady-state marine engine test cycle. Analysis of the full load tests suggests that equal full load performance is achieved across the engine speed band regardless of fuel at a 15-20°C increase in exhaust gas temperatures for the alcohol blends compared to indolene.
Journal Article

Meeting RFS2 Targets with an E10/E15-like Fuel - Experimental and Analytical Assessment of Higher Alcohols in Multi-component Blends with Gasoline

2013-10-14
2013-01-2612
This paper evaluates the potential of adding higher alcohols to gasoline blendstock in an attempt to improve overall fuel performance. The alcohols considered include ethanol, normal- and iso-structures of propanol, butanol and pentanol as well as normal-hexanol (C2-C6). Fuel performance is quantified based on energy content, knock resistance as well as petroleum displacement and promising multi-component blends are systematically identified based on property prediction methods. These promising multi-component blends, as well as their respective reference fuels, are subsequently tested for efficiency and emissions performance utilizing a gasoline direct injection, spark ignition engine. The engine test results confirm that combustion and efficiency of tailored multi-component blends closely match those of the reference fuels. Regulated emissions stemming from combustion of these blends are equal or lower compared to the reference fuels across the tested engine speed and load regime.
Journal Article

Validating Volt PHEV Model with Dynamometer Test Data Using Autonomie

2013-04-08
2013-01-1458
The first commercially available Plug-In Hybrid Electric Vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in December 2010. The Volt's powertrain architecture provides four modes of operation, including two that are unique and maximize the Volt's efficiency and performance. The electric transaxle has been specially designed to enable patented operating modes both to improve the electric driving range when operating as a battery electric vehicle and to reduce fuel consumption when extending the range by operating with an internal combustion engine (ICE). However, details on the vehicle control strategy are not widely available because the supervisory control algorithm is proprietary. Since it is not possible to analyze the control without vehicle test data obtained from a well-designed Design-of-Experiment (DoE), a highly instrumented GM Volt, including thermal sensors, was tested at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF).
Journal Article

Developing a Utility Factor for Battery Electric Vehicles

2013-04-08
2013-01-1474
As new advanced-technology vehicles are becoming more mainstream, analysts are studying their potential impact on petroleum use, carbon emissions, and smog emissions. Determining the potential impacts of widespread adoption requires testing and careful analysis. PHEVs possess unique operational characteristics that require evaluation in terms of actual in-use driving habits. SAE J2841, “Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using 2001 U.S. DOT National Household Travel Survey Data,” published by SAE in 2009 with a revision in 2010, is a guide to using DOT's National Household Travel Survey (NHTS) data to estimate the relative split between driving in charge-depleting (CD) mode and charge-sustaining (CS) mode for a particular PHEV with a given CD range. Without this method, direct comparisons of the merits of various vehicle designs (e.g., efficiency and battery size) cannot be made among PHEVs, or between PHEVs and other technologies.
Technical Paper

Impact of Ignition Energy Phasing and Spark Gap on Combustion in a Homogenous Direct Injection Gasoline SI Engine Near the EGR Limit

2013-04-08
2013-01-1630
For spark-ignition gasoline engines operating under the wide speed and load conditions required for light duty vehicles, ignition quality limits the ability to minimize fuel consumption and NOx emissions via dilution under light and part load conditions. In addition, during transients including tip-outs, high levels of dilution can occur for multiple combustion events before either the external exhaust gas can be adjusted and cleared from the intake or cam phasing can be adjusted for correct internal dilution. Further improvement and a thorough understanding of the impact of the ignition system on combustion near the dilution limit will enable reduced fuel consumption and robust transient operation. To determine and isolate the effects of multiple parameters, a variable output ignition system (VOIS) was developed and tested on a 3.5L turbocharged V6 homogeneous charge direct-injection gasoline engine with two spark plug gaps and three ignition settings.
Technical Paper

Ambient Temperature (20°F, 72°F and 95°F) Impact on Fuel and Energy Consumption for Several Conventional Vehicles, Hybrid and Plug-In Hybrid Electric Vehicles and Battery Electric Vehicle

2013-04-08
2013-01-1462
This paper determines the impact of ambient temperature on energy consumption of a variety of vehicles in the laboratory. Several conventional vehicles, several hybrid electric vehicles, a plug-in hybrid electric vehicle and a battery electric vehicle were tested for fuel and energy consumption under test cell conditions of 20°F, 72°F and 95°F with 850 W/m₂ of emulated radiant solar energy on the UDDS, HWFET and US06 drive cycles. At 20°F, the energy consumption increase compared to 72°F ranges from 2% to 100%. The largest increases in energy consumption occur during a cold start, when the powertrain losses are highest, but once the powertrains reach their operating temperatures, the energy consumption increases are decreased. At 95°F, the energy consumption increase ranges from 2% to 70%, and these increases are due to the extra energy required to run the air-conditioning system to maintain 72°F cabin temperatures.
Technical Paper

Development of a Micro-Engine Testing System

2012-10-23
2012-32-0105
A test stand was developed to evaluate an 11.5 cc, two-stroke, internal combustion engine in anticipation of future combustion system modifications. Detailed engine testing and analysis often requires complex, specialized, and expensive equipment, which can be problematic for research budgets. This problem is compounded by the fact that testing “micro” engines involves low flow rates, high rotational speeds, and compact dimensions which demand high-accuracy, high-speed, and compact measurement systems. On a limited budget, the task of developing a micro-engine testing system for advanced development appears quite challenging, but with careful component selection it can be accomplished. The anticipated engine investigation includes performance testing, fuel system calibration, and combustion analysis. To complete this testing, a custom test system was developed.
Journal Article

Design of an On-Road PHEV Fuel Economy Testing Methodology with Built-In Utility Factor Distance Weighting

2012-04-16
2012-01-1194
As vehicle technology progresses to new levels of sophistication, so too, vehicle test methods must evolve. This is true for analytical testing in a laboratory and for on-road vehicle testing. Every year since 1993, the U.S. Department of Energy (DOE) and original equipment manufacturer (OEM) sponsors have organized a series of competitions featuring advanced hybrid electric vehicle (HEV) technology to develop and promote DOE goals in fuel savings and alternative fuel usage. The competition has evolved over many years and has included many alternative fuels feeding the prime mover (including hydrogen fuel cells). EcoCAR turned its focus to plug-in hybrid electric vehicles (PHEVs) and it was quickly realized that to keep using on-road testing methods to evaluate fuel and electricity consumption, a new method needed to be developed that would properly weight depleting operation with the sustaining operation, using the established Utility Factor (UF) method.
Technical Paper

Friction between Piston and Cylinder of an IC Engine: a Review

2011-04-12
2011-01-1405
Engine friction serves as an important domain for study and research in the field of internal combustion engines. Research shows that friction between the piston and cylinder accounts for almost 20% of the losses in an engine and therefore any effort to minimize friction losses will have an immediate impact on engine efficiency and thus vehicle fuel economy. The two most common methods to experimentally measure engine friction are the floating liner method and the instantaneous indicated mean effective pressure (IMEP) method. This paper provides a detailed review of the IMEP method, presents major findings, and discusses sources of error. Although the instantaneous IMEP method is relatively new compared to the floating liner method, it has been used by many scientists and engineers for calculating piston ring assembly friction with consistent results.
Technical Paper

The Effects of Oxygenated Biofuel on Intake Oxygen Concentration, EGR, and Performance of a 1.9L Diesel Engine

2010-04-12
2010-01-0868
Exhaust gas recirculation (EGR) has been employed in a diesel engine to reduce NOx emissions by diluting the fresh air charge with gases composed of primarily N2, CO2, H2O, and O2 from the engines exhaust stream. The addition of EGR reduces the production of NOx by lowering the peak cylinder gas temperature and reducing the concentration of O2 molecules, both of which contribute to the NOx formation mechanism. The amount of EGR has been typically controlled using an open loop control strategy where the flow of EGR was calibrated to the engine speed and load and controlled by the combination of an EGR valve and the ratio of the boost and exhaust back pressures. When oxygenated biofuels with lower specific energy are used, the engine control unit (ECU) will demand a higher fuel rate to maintain power output, which can alter the volumetric flow rate of EGR. In addition, oxygenated biofuels affect the oxygen concentration in the intake manifold gas stream.
X