Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

A Study on Prediction of Unburned Hydrocarbons in Active Pre-chamber Gas Engine: Combustion Analysis Using 3D-CFD by Considering Wall Quenching Effects

2021-09-05
2021-24-0049
To reproduce wall quenching phenomena using 3D-CFD, a wall quenching model was constructed based on the Peclet number. The model was further integrated with the flame propagation model. Combustion analysis showed that that a large amount of unburned hydrocarbons (UHCs) remained in the piston clevis and small gaps. Furthermore, the model was capable of predicting the increase in UHC emissions when there was a delay in the ignition time. The flame front cells were plotted on Peters' premixed turbulent combustion diagram to identify transitions in the combustion states. It was found that the flame surface transitioned from corrugated flamelets through thin reaction zones to wrinkled flamelets and further to laminar flamelets, which led to wall quenching. The turbulent Reynolds number (Re) decreased rapidly due to the increase in laminar flame speed and flame thickness and the decrease in turbulent intensity and turbulent scale.
Technical Paper

Conversion Performance Prediction of Thermal-Deteriorated Three-Way Catalysts: Surface Reaction Model Development Considering Platinum Group Metals and Co-Catalyst

2021-09-05
2021-24-0077
Three-way catalyst (TWC) converters can purify harmful substances, such as carbon monoxide, nitrogen oxides, and hydrocarbons, from the exhaust gases of gasoline engines. However, large amounts of these substances may be emitted before the TWC reaches its light-off temperature during cold starts, and its performance may be impaired by thermal deterioration during high-load driving. In this work, a simulation model was developed using axisuite commercial software by Exothermia S.A to predict the light-off conversion performance of Pd/CeO2-ZrO2-Al2O3 catalysts with different degrees of thermal deterioration. The model considered detailed surface reactions and the main factor of the deterioration mechanism. In the detailed reaction mechanism, adsorption, desorption, and surface reactions of each gas species at active sites of the platinum group metal (PGM) particles were considered based on the Langmuir-Hinshelwood mechanism.
Technical Paper

A Fundamental Study on Combustion Characteristics in a Pre-Chamber Type Lean Burn Natural Gas Engine

2019-09-09
2019-24-0123
Pre-chamber spark ignition technology can stabilize combustion and improve thermal efficiency of lean burn natural gas engines. During compression stroke, a homogeneous lean mixture is introduced into pre-chamber, which separates spark plug electrodes from turbulent flow field. After the pre-chamber mixture is ignited, the burnt jet gas is discharged through multi-hole nozzles which promotes combustion of the lean mixture in the main chamber due to turbulence caused by high speed jet and multi-points ignition. However, details mechanism in the process has not been elucidated. To design the pre-chamber geometry and to achieve stable combustion under the lean condition for such engines, it is important to understand the fundamental aspects of the combustion process. In this study, a high-speed video camera with a 306 nm band-pass filer and an image intensifier is used to visualize OH* self-luminosity in rapid compression-expansion machine experiment.
Technical Paper

Developments of the Reduced Chemical Reaction Scheme for Multi-Component Gasoline Fuel

2015-09-01
2015-01-1808
The reduced chemical reaction scheme which can take the effect of major fuel components on auto ignition timing into account has been developed. This reaction scheme was based on the reduced reaction mechanism for the primary reference fuels (PRF) proposed by Tsurushima [1] with 33 species and 38 reactions. Some pre-exponential factors were modified by using Particle Swarm Optimization to match the ignition delay time versus reciprocal temperature which was calculated by the detailed scheme with 2,301 species and 11,116 elementary chemical reactions. The result using the present reaction scheme shows good agreements with that using the detailed scheme for the effects of EGR, fuel components, and radical species on the ignition timing under homogeneous charge compression ignition combustion (HCCI) conditions.
Journal Article

ANALYSIS OF NOx CONVERSION USING A QUASI 2-D NH3-SCR MODEL WITH DETAILED REACTIONS

2011-08-30
2011-01-2081
We have constructed a quasi-2-dimensional NH₃-SCR model with detailed surface reactions to analyze the NOx conversion mechanism and reasons for its inhibition at low temperatures. The model consists of seven detailed surface reactions proposed by Grozzale et al., and calculates longitudinal gas flow, gas phase-catalyst phase mass transfer, and mass diffusion within the catalyst phase in the depth dimension. Using the model, we have analyzed the results of pulsed ammonia (NH₃) feed tests at various catalyst temperatures, and results show that ammonium nitrate (NH₄NO₃) is the inhibitor in NH₃-SCR reactions at low temperatures. In addition, we found that cutting the supply of NH₃ causes decomposition of NH₄NO₃, providing surface ammonia (NH₄+), which rapidly reacts with adjacent NOx, leading to an instantaneous rise in nitrogen (N₂) formation.
Technical Paper

Improvement of Combustion and Exhaust Gas Emissions in a Passenger Car Diesel Engine by Modification of Combustion Chamber Design

2006-10-16
2006-01-3435
Three types of combustion chamber configurations (Types A, B, and C) with compression ratio lower than that of the baseline were tested for improved performance and exhaust gas emissions from an inline-four-cylinder 1.7-liter common-rail diesel engine manufactured for use with passenger cars. First, three combustion chambers were examined numerically using CFD code. Second, engine tests were conducted by using Type B combustion chamber, which is expected to have the best performance and exhaust gas emissions of all. As a result, 80% of NOx emissions at both low and medium loads at 1500 rpm, the engine speed used frequently in the actual city driving, improved with nearly no degradation in smoke emissions and brake thermal efficiency. It was shown that a large amount of cooled EGR enables NOx-free combustion with long ignition delay.
Technical Paper

Numerical Simulation Accounting for the Finite-Rate Elementary Chemical Reactions for Computing Diesel Combustion Process

2005-09-11
2005-24-051
To facilitate research and development of diesel engines, the universal numerical code for predicting diesel combustion has been favored for the past decade. In this paper, the finite-rate elementary chemical reactions, sometimes called the detailed chemical reactions, are introduced into the KIVA-3V code through the use of the Partially Stirred Reactor (PaSR) model with the KH-RT break-up, modified collision and velocity interpolation models. Outcomes were such that the predicted pressure histories have favorable agreements with the measurements of single and double injection cases in the diesel engine for use in passenger cars. Thus, it is demonstrated that the present model will be a useful tool for predicting ignition and combustion characteristics encountered in the cylinder.
Technical Paper

Experimental and Numerical Studies on Particulate Matter Formed in Fuel Rich Mixture

2003-10-27
2003-01-3175
Experimental and numerical studies on PAHs (Polycyclic Aromatic Hydrocarbons) and PM (Particulate Matters) formed in the fuel rich mixture have been conducted. In the experiment, neat n-heptane and n-heptane with benzene 25 % by weight were chosen as test fuels. In-cylinder gases produced by the fuel-rich HCCI (Homogeneous Charge Compression Ignition) combustion were directly sampled and analyzed by the use of GC/MS (Gas Chromatograph/Mass Spectro- metry), and PM emission was also measured by PM sampling system to reveal characteristics of PM formation. Numerical study has been also carried out using a zero dimensional combustion model combined with detailed chemistry. Furthermore, simple surface growth of soot particles was integrated into a detailed chemical kinetic model, and validated with the experimental data.
Technical Paper

Experimental Study on Unregulated Emission Characteristics of Turbocharged DI Diesel Engine with Common Rail Fuel Injection System

2003-10-27
2003-01-3158
In this study, we selected four unregulated emissions species, formaldehyde, benzene, 1,3-butadiene and benzo[a]pyrene to research the emission characteristics of these unregulated components experimentally. The engine used was a water-cooled, 8-liter, 6-cylinder, 4-stroke-cycle, turbocharged DI diesel engine with a common rail fuel injection system manufactured for the use of medium-duty trucks, and the fuel used was JIS second-class light gas oil, which is commercially available as diesel fuel. The results of experiments indicate as follows: formaldehyde tends to be emitted under the low load condition, while 1,3-butadiene is emitted at the low engine speed. This is believed to be because 1,3-butadiene decomposes in a short time, and the exhaust gas stays much longer in a cylinder under the low speed condition than under the high engine speed one. Benzene is emitted under the low load condition, as it is easily oxidized in high temperature.
Technical Paper

Numerical Study on Iso-Octane Homogeneous Charge Compression Ignition

2003-05-19
2003-01-1820
A numerical study was carried out to investigate auto-ignition characteristics during HCCI predicted by using zero and multi-dimensional models combined with detailed kinetics including 116 chemical species and 689 elementary reactions involving iso-octane. In the simulation, homogeneous charge compression ignition of the fuel was analyzed under the same conditions as encountered in internal combustion engines. The results elucidated the combustible region and oxidation process of iso-octane with the formation and destruction of various chemical species in the cylinder.
Technical Paper

A Numerical Study on Ignition and Combustion of a DI Diesel Engine by Using CFD Code Combined with Detailed Chemical Kinetics

2003-05-19
2003-01-1847
A CFD code combined with detailed chemical kinetics has been developed, linking with KIVA-3 and subroutines in CHEMKIN-II directly with some modifications. By using this CFD code, formation processes of combustion and exhaust gas emission for a turbo-charged DI diesel engine with common rail fuel injection system were simulated. As a result, formation processes of pollutant including NOx and soot were also considered according to the calculation results. The results show that NO caused by the extended Zeldvich mechanism accounted for about 88% of all NO, and it was found that there is a possibility to predict where and when soot will be formed by considering a simplified soot formation model.
Technical Paper

Experimental and Numerical Studies on Soot Formation in Fuel Rich Mixture

2003-05-19
2003-01-1850
Experimental and numerical studies are conducted on the formation of soot and Polycyclic Aromatic Hydrocarbons (PAHs), regarded as precursors of soot, during the combustion of fuel-rich homogeneous n-heptane mixtures. In-cylinder gases are sampled directly through a high-speed solenoid valve in engine tests, to be analyzed by GC/MS for qualifying PAHs. Smoke concentration is also measured. A numerical study is carried out by using a zero-dimensional model combined with detailed chemical kinetics. The experiments and computations show that PAHs can be predicted qualitatively by means of the present kinetic model.
Technical Paper

The Effects of Fuel Temperature on a Direct Injection Gasoline Spray in a Constant Volume Chamber

2003-05-19
2003-01-1810
Fuel temperature in the injector of small direct injection gasoline engine is high. On some conditions it is higher than saturated temperature. Over saturated temperature spray characteristics greatly change. In order to predict in-cylinder phenomena accurately, it is important to understand spray behavior and mixture process above saturated temperature. Therefore spray shape, mixture formation process and Sauter mean radius were (SMR) measured in a constant volume chamber. And based on the measurement result initial spray boundary conditions were arranged so that spray characteristics over saturated temperature could be represented by using CFD code KIVA-3[1]. Moreover KIVA-3 code was combined with detailed chemical kinetics code Chemkin II to predict combustion products. [2] Calculated combustion process was validated with visualization of chemiluminescence. As a result, spray shape and penetration length have good agreement with measured ones for each fuel temperature.
Technical Paper

Mixture formation and combustion characteristics of directly injected LPG spray

2003-05-19
2003-01-1917
It has been recognized that alternative fuels such as liquid petroleum gas (LPG) has less polluting combustion characteristics than diesel fuel. Direct-injection stratified-charge combustion LPG engines with spark-ignition can potentially replace conventional diesel engines by achieving a more efficient combustion with less pollution. However, there are many unknowns regarding LPG spray mixture formation and combustion in the engine cylinder thus making the development of high-efficiency LPG engines difficult. In this study, LPG was injected into a high pressure and temperature atmosphere inside a constant volume chamber to reproduce the stratification processes in the engine cylinder. The spray was made to hit an impingement wall with a similar profile as a piston bowl. Spray images were taken using the Schlieren and laser induced fluorescence (LIF) method to analyze spray penetration and evaporation characteristics.
X