Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Transient Flow Field Behavior after End of Spray Injection Under Different Injection and Flash Boiling Conditions

2023-09-29
2023-32-0092
The continuous improvement of gasoline direct injection (GDI) engine is largely attributed to the enhanced understanding of air-fuel mixing and combustion processes. This work investigates the transient behavior of the ambient flow fields of hexane spray using the combined diagnostics of fluorescent particle image velocimetry (FPIV) and mie scattering. A hybrid analysis approach is proposed to investigate the residual effect of spray injection on ambient flow fields, including flow similarity measurement, entrainment velocity calculation, and vortex strength detection. The work investigates the residual effect under different injection durations, injection pressure, and flash-boiling extent of the spray, and unveils correlation between vortex strength and the endurance of the residual effect.
Technical Paper

Adaptive Optimal Management Strategy for Hybrid Vehicles Based on Pontryagin’s Minimum Principle

2020-04-14
2020-01-1191
The energy management strategies (EMS) for hybrid electric vehicles (HEV) have a great impact on the fuel economy (FE). The Pontryagin's minimum principle (PMP) has been proved to be a viable control strategy for HEV. The optimal costate of the PMP control can be determined by the given information of the driving conditions. Since the full knowledge of future driving conditions is not available, this paper proposed a dynamic optimization method for PMP costate without the prediction of the driving cycle. It is known that the lower fuel consumption the method yields, the more efficiently the engine works. The selection of costate is designed to make the engine work in the high efficiency range. Compared with the rule-based control, the proposed method by the principle of Hamiltonian, can make engine working points have more opportunities locating in the middle of high efficiency range, instead of on the boundary of high efficiency range.
Technical Paper

Influence of Port Water Injection on the Combustion Characteristics and Exhaust Emissions in a Spark-Ignition Direct-Injection Engine

2020-04-14
2020-01-0294
It is well known that engine downsizing is still the main energy-saving technology for spark-ignition direct-injection (SIDI) engine. However, with the continuous increase of the boosting ratio, the gasoline engine is often accompanied by the occurrence of knocking, which has the drawback to run the engine at retarded combustion phasing. Besides, in order to protect the turbine blades from being sintered by high exhaust temperature, the strategies of fuel enrichment are often taken to reduce the combustion temperature, which ultimately leads to a high level of particulate number emission. Therefore, to address the issues discussed above, the port water injection (PWI) techniques on a 1.2-L turbocharged, three-cylinder, SIDI engine were investigated. Measurements indicate that the optimization of spark timing has a significant impact on its performance.
Technical Paper

Diesel Spray Characterization at Ultra-High Injection Pressure of DENSO 250 MPa Common Rail Fuel Injection System

2017-03-28
2017-01-0821
High fuel injection pressure has been regarded as a key controlling factor for internal combustion engines to achieve good combustion performance with reduced emissions and improved fuel efficiency. For common-rail injection system (CRS) used in advanced diesel engines, fuel injection pressure can often be raised to beyond 200 MPa. Although characteristics of diesel spray has been thoroughly studied, little work has been done at ultra-high injection pressures. In this work, the characteristics of CRS diesel spray under ultra-high injection pressure up to 250 MPa was investigated. The experiments were conducted in an optically accessible high-pressure and high-temperature constant volume chamber. The injection pressure varied from 50 MPa to up to 250 MPa. Both non-evaporating condition and evaporating condition were studied. A single-hole injector was specially designed for this investigation.
Technical Paper

Cycle-to-Cycle Analysis of Swirl Flow Fields inside a Spark-Ignition Direct-Injection Engine Cylinder Using High-Speed Time-Resolved Particle Image Velocimetry

2016-04-05
2016-01-0637
The cycle-to-cycle variations of in-cylinder flow field represent a significant challenge which influence the stability, fuel economy, and emissions of engine performance. In this experimental investigation, the high-speed time-resolved particle image velocimetry (PIV) is applied to reveal the flow field variations of a specific swirl plane in a spark-ignition direct-injection engine running under two different swirl air flow conditions. The swirl flow is created by controlling the opening of a control valve mounted in one of the two intake ports. The objective is to quantify the cycle-to-cycle variation of in-cylinder flow field at different crank angles of the engine cycle. Four zones along the measured swirl plane are divided according to the positions of four valves in the cylinder head. The relevance index is used to evaluate the cycle-to-cycle variation of the velocity flow field for each zone.
Technical Paper

Analysis of the Cycle-to-Cycle Variations of In-Cylinder Vortex Structure and Vorticity using Phase-Invariant Proper Orthogonal Decomposition

2015-09-01
2015-01-1904
The proper formation of fuel-air mixture, which depends to a large extend on the complex in-cylinder air flow, is an important criterion to control the clean and reliable combustion process in spark-ignition direct-injection (SIDI) engines. The in-cylinder flow vorticity field presents highly transient complex characteristics, and the corresponding vorticity field also evolves in the entire engine cycle from intake to exhaust strokes. It is also widely recognized that the vorticity field plays a key role in the in-cylinder turbulent field because it influences the air-fuel mixing and flame development process. In this investigation, the in-cylinder vortex structure and vorticity field characteristics are analyzed using the phase-invariant proper orthogonal decomposition (POD) method.
Journal Article

Particle Number Emissions Reduction Using Multiple Injection Strategies in a Boosted Spark-Ignition Direct-Injection (SIDI) Gasoline Engine

2014-10-13
2014-01-2845
Spark-ignition direct-injection (SIDI) gasoline engine, especially in downsized boosted engine platform, has proven to be one of the most promising concepts to improve vehicle fuel economy. SIDI engines are also getting a larger share of the gasoline engine market which is traditionally dominated by the port fuel injection (PFI) engines in the U.S., European and Chinese vehicles. However, higher particle number emissions associated with operating the engine at higher loads pose additional challenges for meeting future stringent emissions regulations. In this study, the potential of using multiple injection strategies (double injection and triple injection strategy during the intake stroke in homogeneous combustion mode) to reduce particle number emissions in a 2.0 liter boosted SIDI gasoline engine at 1000 rpm, 11 bar BMEP condition was investigated using Horiba MEXA SPCS1000 PN measurement instrument.
Technical Paper

Analyzing In-cylinder Flow Evolution and Variations in a Spark-Ignition Direct-Injection Engine Using Phase-Invariant Proper Orthogonal Decomposition Technique

2014-04-01
2014-01-1174
The preparation of fuel-air mixture and its efficient, clean, and reliable combustion in spark-ignition direct-injection (SIDI) engines depend to a large extend on the complex in-cylinder air flow. It has been widely recognized that the ensemble-averaged flow field provides rather limited understanding of in-cylinder air motion due to the strong cycle-to-cycle variations. In this study, time-resolved particle image velocimetry (PIV) is utilized to measure the in-cylinder air motion in a motored single-cylinder optical engine. Then, the velocity fields from different phases (crank-angle positions during intake and compression strokes) of 200 engine cycles are analyzed using phase-invariant proper orthogonal decomposition (POD) technique. With the phase-invariant POD method, the velocity fields from different phases are decomposed into a single set of POD modes. In this manner, the POD modes can be used to represent any phase of the flow.
Technical Paper

A Preliminary CFD Investigation of In-Cylinder Stratified EGR for Spark Ignition Engines

2002-05-06
2002-01-1734
High exhaust gas recirculation (EGR) tolerance is always pursued not only for its advantages of the pumping loss reduction and fuel economy benefit, but also for stringent emission requirements by using conventional three-way catalytic converter (TWC) instead of costly NOx trap. How to keep fresh charge and EGR separated in the cylinder of a conventional four valve gasoline engine is a critical challenge. This work establishes advanced user subroutines and overall simulation strategies to model engine in-cylinder turbulent flow, temperature, pressure, and EGR concentration fields and to simulate EGR stratification process in a typical pent-roof gasoline engine cylinder during intake and compression strokes.
Technical Paper

Numerical Study on Swirl-Type High-Dilution Stratified EGR Combustion System

2000-06-19
2000-01-1949
High-dilution stratified EGR combustion system operating at stoichiometric air-fuel ratio (A/F) could offer significant fuel economy saving comparable to the lean burn or stratified charge direct injection SI engines, while still complies with stringent emission standards by using the conventional three-way catalytic converter. The most critical challenge is to keep substantial separation between EGR gas and air-fuel mixture, or to minimize the mixing between these two zones to an acceptable level for stable and complete combustion. Swirl-type stratified EGR and air-fuel flow structure is considered desirable for this purpose, because the circular engine cylinder tends to preserve the swirl motion and the axial piston movement has minimal effect on the flow structure swirling about the same axis. In this study, KIVA3V was used to simulate mixing and combustion processes in a typical pent-roof gasoline engine cylinder during compression and expansion strokes.
X