Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Unstructured with a Point: Validation and Robustness Evaluation of Point-Cloud Based Path Planning

2021-04-06
2021-01-0251
Robust autonomous navigation in unstructured environments is an unsolved problem and critical to the operation of autonomous military and rescue ground vehicles. Two-dimensional path planners operating on occupancy grids or costs maps can produce infeasible paths when the operational area includes complex terrain. Recently, sample-based path planners that plan on LiDAR-acquired point-cloud maps have been proposed. These approaches require no discretization of the operational area and provide direct pose estimation by modeling vehicle and terrain interaction. In this paper, we show that direct sample-based path planning on point clouds is effective and robust in unstructured environments. Robustness is demonstrated by completing a system parameter sensitivity analysis of the system in an Unreal simulation environment and partnered with field validation.
Journal Article

Supervised Terrain Classification with Adaptive Unsupervised Terrain Assessment

2021-04-06
2021-01-0250
Off road navigation demands ground robots to traverse complex and often changing terrain. Classification and assessment of terrain can improve path planning strategies by reducing travel time and energy consumption. In this paper we introduce a terrain classification and assessment framework that relies on both exteroceptive and proprioceptive sensor modalities. The robot captures an image of the terrain it is about to traverse and records corresponding vibration data during traversal. These images are manually labelled and used to train a support vector machine (SVM) in an offline training phase. Images have been captured under different lighting conditions and across multiple locations to achieve diversity and robustness to the model. Acceleration data is used to calculate statistical features that capture the roughness of the terrain whereas angular velocities are used to calculate roll and pitch angles experienced by the robot.
Journal Article

Balancing Lifecycle Sustainment Cost with Value of Information during Design Phase

2020-04-14
2020-01-0176
The complete lifecycle of complex systems, such as ground vehicles, consists of multiple phases including design, manufacturing, operation and sustainment (O&S) and finally disposal. For many systems, the majority of the lifecycle costs are incurred during the operation and sustainment phase, specifically in the form of uncertain maintenance costs. Testing and analysis during the design phase, including reliability and supportability analysis, can have a major influence on costs during the O&S phase. However, the cost of the analysis itself must be reconciled with the expected benefits of the reduction in uncertainty. In this paper, we quantify the value of performing the tests and analyses in the design phase by treating it as imperfect information obtained to better estimate uncertain maintenance costs.
Journal Article

Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain

2013-04-08
2013-01-1191
This paper presents a computational framework for the physics-based simulation of light vehicles operating on discrete terrain. The focus is on characterizing through simulation the mobility of vehicles that weigh 1000 pounds or less, such as a reconnaissance robot. The terrain is considered to be deformable and is represented as a collection of bodies of spherical shape. The modeling stage relies on a novel formulation of the frictional contact problem that requires at each time step of the numerical simulation the solution of an optimization problem. The proposed computational framework, when run on ubiquitous Graphics Processing Unit (GPU) cards, allows the simulation of systems in which the terrain is represented by more than 0.5 million bodies leading to problems with more than one million degrees of freedom.
Technical Paper

An Abstract Multi-Rate Method for Vehicle Dynamics Simulation

2013-04-08
2013-01-1196
The design of vehicles increasingly challenges existing cost, weight, durability, and handling regimes. This challenge is further compounded by pressure to decrease or limit the duration of the design cycle. The simulation of vehicle dynamic behavior commonly applies just rigid, or better rigid and linear flexibility models to predict motions and determine load cases. However, as the boundaries of materials are pushed these are becoming insufficient to accurately predict behavior. Alternatively, complete nonlinear finite element representations of vehicle dynamics are always possible but are presently infeasible for the support of a single design under virtual test, not to mention several design iterations. To address these issues, a novel abstract multi-rate simulation method is outlined which is designed to exploit the richness of available model in the vehicle dynamics domain.
X