Refine Your Search

Topic

Search Results

Technical Paper

Research on Distributed Drive Electric Vehicle Lane Change Trajectory Tracking Control Based on MPC

2024-04-09
2024-01-2554
Distributed drive electric vehicles (DDEVs), characterized by independently controllable torque at each wheel, redundant actuators, and highly integrated drive systems, are considered as the optimal platform for achieving intelligent driving with high safety and efficiency. This paper focuses on the trajectory tracking and lateral stability coordination control problems in high-speed emergency collision avoidance and autonomous lane change scenarios for DDEVs. A trajectory tracking control algorithm is proposed based on model predictive control (MPC) and coordinated optimization of distributed drive torques. The method adopts a hierarchical control architecture. Firstly, the upper-level trajectory planning layer calculates the lane change trajectory data. Based on the trajectory planning results, the middle-level controller designs a time-varying linear model predictive control method to solve the desired front wheel steering angle and additional yaw moment.
Technical Paper

The Energy Consumption Characteristics of Electric Vehicles in the Coastal Area Based on the Powertrain

2023-12-31
2023-01-7098
The sensitivity of the electric vehicle (EV) energy consumption characteristics has seriously hindered the promotion and development of vehicle electrification in the coastal area, as quantities of additional energy are caused by the complex and ever-changing coastal driving conditions. In that case, this paper aims to clarify the quantitative impacts of coastal driving conditions on EV energy consumption characteristics based on the coastal traffic data and the EV powertrain. Firstly, this paper analyzes the coastal driving conditions with the help of multisource traffic data. Secondly, the costal-adapted EV energy consumption model is constructed to reveal the relationship between powertrain performance and coastal driving conditions. Next, the EV coastal driving framework is proposed to identify the EV driving state in the coastal area. Finally, the EV energy consumption spatiotemporal characteristics in a typical coastal road are discussed with the help of simulations.
Technical Paper

Digital Twin Test Method for Autonomous Vehicles Based on PanoSim

2023-12-20
2023-01-7056
This paper proposes an intelligent car testing and evaluation method based on digital twins, which is crucial for ensuring the proper functioning of autonomous driving systems. This method utilizes digital twin testing technology to effectively map and integrate real vehicles in real-world testing scenarios with virtual test environments. By enriching the testing and validation environment for smart cars, this approach improves testing efficiency and reduces costs. This study connects real test vehicles with simulation software testing toolchains to build a digital twin autonomous driving testing platform. This platform facilitates the validation, testing, and evaluation of functional algorithms, and case study is conducted through testing and validation of an emergency collision avoidance system. By rapidly applying digital twin testing and evaluation techniques for intelligent cars, this approach accelerates the development and deployment of autonomous vehicles.
Technical Paper

MRAS-Based Sensorless Vector Control of Wheel Motors

2023-04-11
2023-01-0538
Traditional vector control needs the installation of mechanical sensors to gather rotor position and speed information in order to enhance the control performance and dynamic quality of electric vehicle wheel motors, which increases system cost and reduces system reliability and stability. On the basis of Popov's super-stability theory, an appropriate adjustable model and reference model are constructed, and the system's reference adaptive law is determined. Furthermore, to solve the problem of the standard PI regulator's poor anti-interference capabilities in speed controllers, the approach of utilizing a sliding-mode speed controller in the speed loop is presented. Finally, a MATLAB/SIMULINK simulation model is created to simulate the motor in three scenarios: no-load start, abrupt speed change, and sudden load change, and a permanent magnet synchronous motor experimental platform is created to validate the control approach.
Technical Paper

Research on Driver Driving Style and Driving Condition Recognition Model Based on SVM and XGBoost

2022-03-29
2022-01-0227
At present, the remote monitoring cloud platform of many automobile companies only displays the collected data information, and it does not fully mine the deep-level information of the data. This paper uses data mining and machine learning methods to build a driver's driving style and driving condition prediction and recognition model based on the historical driving information generated by the vehicle, so as to improve the supervision and safety of the driver and the vehicle by automobile companies and other automobile-related industries. First, 36 standard driving cycles are utilized to construct an initial operating condition block data set. Second, we obtain the feature variables of driving style and driving conditions through feature engineering, and two recognition model data sets use the principal component analysis (PCA) and clustering algorithm for data dimensionality reduction and cluster analysis.
Technical Paper

A Semantic Slam System Based on Visual-Inertial Information and around View Images for Underground Parking Lot

2021-04-06
2021-01-0078
As one of the most challenging driving tasks, parking is a common but particularly troublesome problem in large cities. Recently, an excellent solution-automated valet parking (AVP) has become a hot research topic, which allows the driver to leave the vehicle in a drop-off area, while the vehicle driving into the parking slot by itself. For AVP, the precise localization is an indispensable module. However, the global positioning system (GPS) cannot be used in the underground parking lot and the localization method based on lidar is too expensive. In response to solve this problem, we propose a simultaneous localization and mapping system with the semantic information of parking slots (PS-SLAM), which is based on visual-inertial and around view images. First, the calibration of multi-sensors is conducted to obtain their intrinsic and extrinsic parameters. In this way, the around view image and transformation matrices between sensors can be acquired.
Journal Article

Energy-Efficient Braking Torque Distribution Strategy of Rear-Axle Drive Commercial EV Based on Fuzzy Neural Network

2021-04-06
2021-01-0783
Regenerative braking is identified as an essential step toward extending cruising mileage for electric vehicle (EV). Braking energy recovery strategies usually focus on passenger EV and commercial EV is ignored. In this paper, an energy-efficient braking torque distribution strategy is proposed for a rear-axle drive commercial EV to improve braking energy recovery and safety. Firstly, the braking force distribution curve is determined referring to the EU braking law for commercial vehicle and the ideal braking distribution curve. Secondly, a novel braking torque distribution strategy is established adopting fuzzy control algorithm, where the ratio between hydraulic braking torque and regenerative braking torque is updated instantaneously according to vehicle velocity, braking strength and state of charge of battery. Then, the corresponding controller is synthesized on ideal braking condition and several classic cycles.
Technical Paper

Dynamic Simulation for LFP Pouch Batteries Coupled Mechanics-Electrics-Thermodynamics under Mechanical Abuse

2020-04-14
2020-01-1332
The safety design of batteries, an important part in passive safety development of electric vehicle, is difficult in practical project application because of complex structure inside and Multi-physics reactions coupled mechanics-electrics-thermodynamics under mechanical abuse. An efficient computational model of batteries that can be attached to model of vehicle used for collision simulation is needed. In this work, four types of Multi-physics battery models (detailed computational model, simplified representative-sandwich model, composite layered model and simplified layered model) of pouch cell with LiFePO4 system are established in a commercial finite element software LS-DYNA (usually used for vehicle collision simulation). And the difficulties of modeling, resource demanded for calculation, accuracy of results (in mechanics, electrics and thermodynamics) in the four models are compared.
Technical Paper

Personalized Eco-Driving for Intelligent Electric Vehicles

2018-08-07
2018-01-1625
Minimum energy consumption with maximum comfort driving experience define the ideal human mobility. Recent technological advances in most Advanced Driver Assistance Systems (ADAS) on electric vehicles not only present a significant opportunity for automated eco-driving but also enhance the safety and comfort level. Understanding driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system comfort. This research focuses on the personalized and green adaptive cruise control for intelligent electric vehicle, which is also known to be MyEco-ACC. MyEco-ACC is based on the optimization of regenerative braking and typical driving styles. Firstly, a driving style model is abstracted as a Hammerstein model and its key parameters vary with different driving styles. Secondly, the regenerative braking system characteristics for the electric vehicle equipped with 4-wheel hub motors are analyzed and braking force distribution strategy is designed.
Technical Paper

Trajectory-Tracking Control for Autonomous Driving Considering Its Stability with ESP

2018-08-07
2018-01-1639
With rapid increase of vehicles on the road, safety concerns have become increasingly prominent. Since the leading cause of many traffic accidents is known to be by human drivers, developing autonomous vehicles is considered to be an effective approach to solve the problems above. Although trajectory tracking plays one of the most important roles on autonomous driving, handling the coupling between trajectory-tracking control and ESP under certain driving scenarios remains to be challenging. This paper focuses on trajectory-tracking control considering the role of ESP. A vehicle model is developed with two degrees of freedom, including vehicle lateral, and yaw motions. Based on the proposed model, the vehicle trajectory is separated into both longitudinal and lateral motion. The coupling effect of the vehicle and ESP is analyzed in the paper. The lateral trajectory-tracking algorithm is developed based on the preview follower theory.
Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

Design of Automatic Parallel Parking System Based on Multi-Point Preview Theory

2018-04-03
2018-01-0604
As one of advanced driver assistance systems (ADAS), automatic parking system has great market prospect and application value. In this paper, based on an intelligent vehicle platform, an automatic parking system is designed by using multi-point preview theory. The vehicle kinematics model was established, based on Ackermann steering principle. By analyzing working conditions of parallel parking, complex constraint condition of parking trajectory is established and reference trajectory based on sine wave is proposed. In addition, combined with multi-point preview theory, the design of trajectory following controller for automatic parking is completed. The cost function is designed, which consider the trajectory following effect and the degree of easy handling. The optimization of trajectory following control is completed by using the cost function.
Technical Paper

Automatic Drive Train Management System for 4WD Vehicle Based on Road Situation Identification

2018-04-03
2018-01-0987
The slip ratio of vehicle driving wheels is easily beyond a reasonable range in the complex and changeable driving conditions. In order to achieve the adaptive acceleration slip regulation of four-wheel driving (4WD) vehicle, a fuzzy control strategy of Automatic Drive Train Management (ADM) system based on road situation identification was proposed in this paper. Firstly, the influence on the control strategy of ADM system was analyzed from two aspects, which included the different road adhesion coefficients and the vehicle’s ramp driving state. In the meantime several quantitative expressions of relevant control parameters were derived. Secondly, the fuzzy logic control algorithm was adopted to design a road situation identification subsystem and a ramp driving state identification subsystem respectively. The former was based on the μ-S curve model, and the latter was based on the vehicle driving equilibrium equation.
Technical Paper

Studies on Drivers’ Driving Styles Based on Inverse Reinforcement Learning

2018-04-03
2018-01-0612
Although advanced driver assistance systems (ADAS) have been widely introduced in automotive industry to enhance driving safety and comfort, and to reduce drivers’ driving burden, they do not in general reflect different drivers’ driving styles or customized with individual personalities. This can be important to comfort and enjoyable driving experience, and to improved market acceptance. However, it is challenging to understand and further identify drivers’ driving styles due to large number and great variations of driving population. Previous research has mainly adopted physical approaches in modeling drivers’ driving behavior, which however are often very much limited, if not impossible, in capturing human drivers’ driving characteristics. This paper proposes a reinforcement learning based approach, in which the driving styles are formulated through drivers’ learning processes from interaction with surrounding environment.
Technical Paper

A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

2018-04-03
2018-01-0557
Knowledge of the tire slip ratio can greatly improve vehicle longitudinal stability and its dynamic performance. Most conventional slip ratio observers were mainly designed based on input of non-driven wheel speed and estimated vehicle speed. However, they are not applicable for electric vehicles (EVs) with four in-wheel motors. Also conventional methods on speed estimation via integration of accelerometer signals can often lead to large offset by long-time integral calculation. Further, model uncertainties, including steady state error and unmodeled dynamics, are considered as additive disturbances, and may affect the stability of the system with estimated state error. This paper proposes a novel slip ratio observer based on input-to-state stability (ISS) method for electric vehicles with four-wheel independent driving motors.
Technical Paper

Design and Control of Torque Feedback Device for Driving Simulator Based on MR Fluid and Coil Spring Structure

2018-04-03
2018-01-0689
Since steering wheel torque feedback is one of the crucial factors for drivers to gain road feel and ensure driving safety, it is especially important to simulate the steering torque feedback for a driving simulator. At present, steering wheel feedback torque is mainly simulated by an electric motor with gear transmission. The torque response is typically slow, which can result in drivers’ discomfort and poor driving maneuverability. This paper presents a novel torque feedback device with magnetorheological (MR) fluid and coil spring. A phase separation control method is also proposed to control its feedback torque, including spring and damping torques respectively. The spring torque is generated by coil spring, the angle of coil spring can be adjusted by controlling a brushless DC motor. The damping torque is generated by MR fluid, the damping coefficient of MR fluid can be adjusted by controlling the current of excitation coil.
Technical Paper

Driving Behavior Prediction at Roundabouts Based on Integrated Simulation Platform

2018-04-03
2018-01-0033
Due to growing interest in automated driving, the need for better understanding of human driving behavior in uncertain environment, such as driving behavior at un-signalized crossroad and roundabout, has further increased. Driving behavior at roundabout is greatly influenced by different dynamic factors such as speed, distance and circulating flow of the potentially conflicting vehicles, and drivers should choose whether to leave or wait at the upcoming exit according to these factors. In this paper, the influential dynamic factors and driving behavior characteristics at the roundabout is analyzed in detail, random forest method is then deployed to predict the driving behavior. For training the driving behavior model, four typical roundabout layouts were created under a real-time driving simulator with PanoSim-RT and dSPACE. Traffic participants with different motion style were also set in the simulation platform to mimic real driving conditions.
Technical Paper

Research on the Classification and Identification for Personalized Driving Styles

2018-04-03
2018-01-1096
Most of the Advanced Driver Assistance System (ADAS) applications are aiming at improving both driving safety and comfort. Understanding human drivers' driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system performance, in particular, the acceptance and adaption of ADAS to human drivers. The research presented in this paper focuses on the classification and identification for personalized driving styles. To motivate and reflect the information of different driving styles at the most extent, two sets, which consist of six kinds of stimuli with stochastic disturbance for the leading vehicles are created on a real-time Driver-In-the-Loop Intelligent Simulation Platform (DILISP) with PanoSim-RT®, dSPACE® and DEWETRON® and field test with both RT3000 family and RT-Range respectively.
Technical Paper

Real-Time Automatic Test of AEB with Brake System in the Loop

2018-04-03
2018-01-1450
The limitation of drivers' attention and perception may bring collision dangers, Autonomous Emergency Braking (AEB) can help drivers to avoid the potential collisions through active braking. Since the positive effect of it, motor corporations have begun to equip their vehicles with the system, and regulatory agencies in various countries have introduced test standards. At this stage, the actuator of AEB usually adopts Electronic Stability Program (ESP), but it poor performance of continuous working period and active pressure built-up for all wheels limits its implements. Electromechanical brake booster can realize power assisted brake without relying on the vacuum source and a variety of specific power curves. Moreover it can achieve the active braking with a rapid response, which make it can fulfill requirements of automotive electric and intelligent development.
Technical Paper

Steering Control Based on the Yaw Rate and Projected Steering Wheel Angle in Evasion Maneuvers

2018-04-03
2018-01-0030
When automobiles are at the threat of collisions, steering usually needs shorter longitudinal distance than braking for collision avoidance, especially under the condition of high speed or low adhesion. Thus, more collision accidents can be avoided in the same situation. The steering assistance is in need since the operation is hard for drivers. And considering the dynamic characteristics of vehicles in those maneuvers, the real-time and the accuracy of the assisted algorithms is essential. In view of the above problems, this paper first takes lateral acceleration of the vehicle as the constraint, aiming at the collision avoidance situation of the straight lane and the stable driving inside the curve, and trajectory of the collision avoidance is derived by a quintic polynomial.
X