Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Investigation of Vehicle HVAC Cabin Noise

2008-04-14
2008-01-0836
Noise and vibration have an important influence on a customer's perception of vehicle quality and cabin interior noise levels are a key criteria. The interior sound levels of automobiles have been significantly reduced over the years, with reductions in power train, tire and external wind noise. One of the highest in-cabin noise levels now arises from heating, ventilating and air conditioning systems, generated by the air-rush noise at various HVAC settings. Thus quieter climate control systems are desired by car manufacturers. A systematic benchmarking study was performed to investigate the in-cabin noise of vehicles. 21 passenger cars including compact, mid-size, full-size, and a truck were selected. Tests were conducted on relatively new production vehicles in various conditions. A binaural head system was used in front passenger seat to measure noise levels. The methodology used and the experimental results were presented in this paper.
Technical Paper

Noise Refinement Solutions for Vehicle HVAC Systems

2007-05-15
2007-01-2184
Noise and vibration have important influence on customer's perception of vehicle quality. Research and development have been conducted to investigate the vehicle Heating, Ventilation and Air Conditioning (HVAC) noise generation and transmission mechanism. Noise and vibration comparison tests have been completed for the proposed refinement solutions. Testing results are discussed paying special attentions to the air borne noise reduction. One of interior noise major contributors is the HVAC system, as air handling unit of the HVAC system is located behind the vehicle instrument panel within the cabin. Modifications made to internal structural geometry of the system have been conducted to provide insight into the effect of each structural feature on the overall Sound Pressure Level (SPL) and frequency spectrum components.
Technical Paper

Effects of Vehicle A-pillar Shape on Local Mean and Time-Varying Flow Properties

2001-03-05
2001-01-1086
Separated flow is the main generator of aerodynamic noise in passenger vehicles. The flow around the A-pillar is central to the wind noise as many modern vehicles still have high fluctuating pressures due to flow separations in this region. Current production vehicle geometry is restricted due to the amount of three dimensionality possible in laminated windscreen glass (and door opening etc). New materials (e.g., polycarbonate) offer the possibility of more streamlined shapes which allow less or no flow separation. Therefore, a series of experimental investigations have been conducted to study the effects of the A-pillar and windshield geometry and yaw angles on the local flow and noise using a group of idealised road vehicle models. Surface mean and fluctuating pressures were measured on the side window in the A-pillar regions of all models at different Reynolds numbers and yaw angles.
X