Refine Your Search

Topic

Search Results

Journal Article

Analysis of Ash in Low Mileage, Rapid Aged, and High Mileage Gasoline Exhaust Particle Filters

2017-03-28
2017-01-0930
To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way catalyst washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging was low in quantity although similar in quality to real time ash. Filters were also examined after a low mileage break-in of approximately 3000 km.
Journal Article

Ash Accumulation and Impact on Sintered Metal Fiber Diesel Particulate Filters

2015-04-14
2015-01-1012
While metal fiber filters have successfully shown a high degree of particle retention functionality for various sizes of diesel engines with a low pressure drop and a relatively high filtration efficiency, little is known about the effects of lubricant-derived ash on the fiber filter systems. Sintered metal fiber filters (SMF-DPF), when used downstream from a diesel engine, effectively trap and oxidize diesel particulate matter via an electrically heated regeneration process where a specific voltage and current are applied to the sintered alloy fibers. In this manner the filter media essentially acts as a resistive heater to generate temperatures high enough to oxidize the carbonaceous particulate matter, which is typically in excess of 600°C.
Journal Article

Featherweight Composites Manufactured by Selective Nanobridization with Potential Applications in the Automotive Industry

2014-04-01
2014-01-1061
Nanobridization is a nano-inspired process by which scalable material structures can be designed and manufactured by combining the concept of ‘Nano Free Volume’ with specific material molecules defining a systemic density (nano-density). This approach explores nanotechnology from a porosity perspective rather than nanoparticles thus minimizing health concerns with nanotechnology, while providing nanoporosity throughout the entirety of the composite system. Nanobridization may be viewed as a density system transformation of material heterogeneity utilizing a unified class of materials such as Polynanomers and in developing next generation structures such as Featherweight Carbon Fiber Reinforced Polymers (CFRP). Polynanomers are further defined by the incorporation of hollow carbon fibers, electrospun nano-fibers, nano-pores and carbon nanotubes (CNT) into this newly established type of matrix.
Journal Article

Direct Measurements of Soot/Ash Affinity in the Diesel Particulate Filter by Atomic Force Microscopy and Implications for Ash Accumulation and DPF Degradation

2014-04-01
2014-01-1486
Inorganic engine lubricant additives, which have various specific, necessary functions such as anti-wear, leave the combustion chamber bound to soot particles (approximately ≤1% by mass) as ash [13], and accumulate in aftertreatment components. The diesel particulate filter (DPF) is especially susceptible to ash-related issues due to its wall-flow architecture which physically traps most of the soot and ash emissions. Accumulated lubricant-derived ash results in numerous problems including increased filter pressure drop and decreased catalytic functionality. While much progress has been made to understand the macroscopic details and effects of ash accumulation on DPF performance, this study explores the nano- and micron-scale forces which impact particle adhesion and mobility within the particulate filter.
Technical Paper

In Situ Control of Lubricant Properties for Reduction of Power Cylinder Friction through Thermal Barrier Coating

2014-04-01
2014-01-1659
Lowering lubricant viscosity to reduce friction generally carries a side-effect of increased metal-metal contact in mixed or boundary lubrication, for example near top ring reversal along the engine cylinder liner. A strategy to reduce viscosity without increased metal-metal contact involves controlling the local viscosity away from top-ring-reversal locations. This paper discusses the implementation of insulation or thermal barrier coating (TBC) as a means of reducing local oil viscosity and power cylinder friction in internal combustion engines with minimal side-effects of increased wear. TBC is selectively applied to the outside diameter of the cylinder liner to increase the local oil temperature along the liner. Due to the temperature dependence of oil viscosity, the increase in temperature from insulation results in a decrease in the local oil viscosity.
Journal Article

Soot and Ash Deposition Characteristics at the Catalyst-Substrate Interface and Intra-Layer Interactions in Aged Diesel Particulate Filters Illustrated using Focused Ion Beam (FIB) Milling

2012-04-16
2012-01-0836
The accumulation of soot and lubrication-derived ash particles in a diesel particulate filter (DPF) increases exhaust flow restriction and negatively impacts engine efficiency. Previous studies have described the macroscopic phenomenon and general effects of soot and ash accumulation on filter pressure drop. In order to enhance the fundamental understanding, this study utilized a novel apparatus that of a dual beam scanning electron microscope (SEM) and focused ion beam (FIB), to investigate microscopic details of soot and ash accumulation in the DPF. Specifically, FIB provides a minimally invasive technique to analyze the interactions between the soot, ash, catalyst/washcoat, and DPF substrate with a high degree of measurement resolution. The FIB utilizes a gallium liquid metal ion source which produces Ga+ ions of sufficient momentum to directionally mill away material from the soot, ash, and substrate layers on a nm-μm scale.
Journal Article

Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control

2010-04-12
2010-01-0811
Ash, primarily derived from diesel engine lubricants, accumulates in diesel particulate filters directly affecting the filter's pressure drop sensitivity to soot accumulation, thus impacting regeneration frequency and fuel economy. After approximately 33,000 miles of equivalent on-road aging, ash comprises more than half of the material accumulated in a typical cordierite filter. Ash accumulation reduces the effective filtration area, resulting in higher local soot loads toward the front of the filter. At a typical ash cleaning interval of 150,000 miles, ash more than doubles the filter's pressure drop sensitivity to soot, in addition to raising the pressure drop level itself. In order to evaluate the effects of lubricant-derived ash on DPF pressure drop performance, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully-controlled exhaust conditions.
Journal Article

Study of On-Board Ammonia (NH3) Generation for SCR Operation

2010-04-12
2010-01-1071
Mechanisms of NH₃ generation using LNT-like catalysts have been studied in a bench reactor over a wide range of temperatures, flow rates, reformer catalyst types and synthetic exhaust-gas compositions. The experiments showed that the on board production of sufficient quantities of ammonia on board for SCR operation appeared feasible, and the results identified the range of conditions for the efficient generation of ammonia. In addition, the effects of reformer catalysts using the water-gas-shift reaction as an in-situ source of the required hydrogen for the reactions are also illustrated. Computations of the NH₃ and NOx kinetics have also been carried out and are presented. Design and impregnation of the SCR catalyst in proximity to the ammonia source is the next logical step. A heated synthetic-exhaust gas flow bench was used for the experiments under carefully controlled simulated exhaust compositions.
Technical Paper

Oil Conditioning as a Means to Minimize Lubricant Ash Requirements and Extend Oil Drain Interval

2009-06-15
2009-01-1782
A novel approach to condition the lubricant at a fixed station in the oil circuit is explored as a potential means to reduce additive requirements or increase oil drain interval. This study examines the performance of an innovative oil filter which releases no additives into the lubricant, yet enhances the acid control function typically performed by detergent and dispersant additives. The filter chemically conditions the crankcase oil during engine operation by sequestering acidic compounds derived from engine combustion and lubricant degradation. Long duration tests with a heavy-duty diesel engine show that the oil conditioning with the strong base filter reduces lubricant acidity (TAN), improves Total Base Number (TBN) retention, and slows the rate of viscosity increase and oxidation. The results also indicate that there may be a reduction in wear and corrosion.
Technical Paper

Characteristics and Effects of Ash Accumulation on Diesel Particulate Filter Performance: Rapidly Aged and Field Aged Results

2009-04-20
2009-01-1086
Ash, mostly from essential lubricant additives, affects diesel particulate filter (DPF) pressure-drop sensitivity and limits filter service life. It raises concern in the lubricant industry to properly specify new oils, and engine and aftertreatment system manufacturers have attempted to find ways to mitigate the problem. To address these issues, results of detailed measurements of ash characteristics in the DPF and their effects on filter performance are presented. In this study, a heavy-duty diesel engine was outfitted with a specially designed rapid lubricant degradation and aftertreatment ash loading system. Unlike previous studies, this system allows for the control of specific exhaust characteristics including ash emission rate, ash-to-particle ratio, ash composition, and exhaust temperature and flow rates independent of the engine operating condition.
Technical Paper

A New Approach to Ethanol Utilization: High Efficiency and Low NOx in an Engine Operating on Simulated Reformed Ethanol

2008-10-06
2008-01-2415
The use of hydrogen as a fuel supplement for lean-burn engines at higher compression ratios has been studied extensively in recent years, with good promise of performance and efficiency gains. With the advances in reformer technology, the use of a gaseous fuel stock, comprising of substantially higher fractions of hydrogen and other flammable reformate species, could provide additional improvements. This paper presents the performance and emission characteristics of a gas mixture of equal volumes of hydrogen, CO, and methane. It has recently been reported that this gas mixture can be produced by reforming of ethanol at comparatively low temperature, around 300C. Experiments were performed on a 1.8-liter passenger-car Nissan engine modified for single-cylinder operation. Special pistons were made so that compression ratios ranging from CR= 9.5 to 17 could be used. The lean limit was extended beyond twice stoichiometric (up to lambda=2.2).
Journal Article

A Novel Accelerated Aging System to Study Lubricant Additive Effects on Diesel Aftertreatment System Degradation

2008-06-23
2008-01-1549
The challenge posed by the long run times necessary to accurately quantify ash effects on diesel aftertreatment systems has led to numerous efforts to artificially accelerate ash loading, with varying degrees of success. In this study, a heavy-duty diesel engine was outfitted with a specially designed rapid lubricant degradation and aftertreatment ash loading system. Unlike previous attempts, the proposed methodology utilizes a series of thermal reactors and combustors to simulate all three major oil consumption mechanisms, namely combustion in the power cylinder, evaporative and volatile losses, and liquid losses through the valve and turbocharger seals. In order to simulate these processes, each thermal reactor allows for the precise control of the level of lubricant additive degradation, as well as the form and quantity of degradation products introduced into the exhaust upstream of the aftertreatment system.
Journal Article

Impact of Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and Engine Wear: Comparison with Conventional Diesel Fuel

2008-04-14
2008-01-1395
The increased use of biodiesel fuels has raised concerns over the fuel's impact on engine performance and hardware compatibility. While these issues have received much attention in recent years, less well-known are the effects of biodiesel on engine-out ash emissions and lubricant properties. Significant differences in composition between biodiesel and petroleum diesel fuels have the potential to influence ash emissions, thereby affecting aftertreatment system performance. Further, the fuel also interacts directly with the lubricant through fuel dilution, and may impact lubricant properties. In this study, a 5.9L, 6 cylinder, Cummins ISB 300 diesel engine was outfitted with a specially designed rapid lubricant aging system and subjected to a set of steady-state engine operating conditions. The lubricant aging system allows for the investigation of the interactions of emissions and combustion products, as well as fuel dilution, on lubricant properties in an accelerated manner.
Technical Paper

Correlations among Ash-Related Oil Species in the Power Cylinder, Crankcase and the Exhaust Stream of a Heavy-Duty Diesel Engine

2007-07-23
2007-01-1965
In this study, changes in the composition of lubricant additives in the power cylinder oil are examined. Samples are extracted from a single cylinder heavy-duty diesel engine in two locations during engine operation; the crankcase and the top ring groove of the piston. Emissions of lubricant-derived ash-forming elements are lower than would be expected based on oil consumption and crankcase oil composition. This occurs partly because the inorganic additive compounds are less volatile than light-end hydrocarbons in the base oil. The tribology of the piston ring pack also affects the composition of the oil consumed in the power cylinder system. The elemental composition of oil extracted from the top ring groove is significantly different than the crankcase oil. Additive metals are concentrated in the top ring groove of the power cylinder. Detergent compounds (i.e. Ca and Mg) concentrate due to the volatility of the base oil. The metals associated with ZDDP (i.e.
Technical Paper

Detailed Chemical and Physical Characterization of Ash Species in Diesel Exhaust Entering Aftertreatment Systems

2007-04-16
2007-01-0318
Irreversible plugging of diesel particulate filters caused by lubricant-derived metallic ash is the single most important factor responsible for long-term performance degradation and reduction in the service life of these filters. While a number of studies in the open literature have already demonstrated the benefits of diesel particulate traps and highlighted some of the difficulties associated with trap operation, many specific factors affecting trap performance and service life are still not well understood. The exact composition and nature of the exhaust entering the trap is one of the most important parameters affecting both short-term trap operation and long-term durability. In this study a fully instrumented Cummins ISB 300 six-cylinder, 5.9 liter, diesel engine was outfitted with a diesel particulate filter and subjected to a subset of the Euro III 13-mode stationary test cycle.
Technical Paper

Engine Wear Modeling with Sensitivity to Lubricant Chemistry: A Theoretical Framework

2007-04-16
2007-01-1566
The life of an automotive engine is often limited by the ability of its components to resist wear. Zinc dialkyldithiophosphate (ZDDP) is an engine oil additive that reduces wear in an engine by forming solid antiwear films at points of moving contact. The effects of this additive are fairly well understood, but there is little theory behind the kinetics of antiwear film formation and removal. This lack of dynamic modeling makes it difficult to predict the effects of wear at the design stage for an engine component or a lubricant formulation. The purpose of this discussion is to develop a framework for modeling the formation and evolution of ZDDP antiwear films based on the relevant chemical pathways and physical mechanisms at work.
Technical Paper

Modeling and Optimizing Honing Texture for Reduced Friction in Internal Combustion Engines

2006-04-03
2006-01-0647
Frictional losses in the piston ring-pack of an engine account for approximately half of the total frictional losses within the power cylinder of an engine. Three-dimensional honing groove texture was modeled, and its effect on piston ring-pack friction and engine brake thermal efficiency was investigated. Adverse effects on engine oil consumption and durability were also considered. Although many non-conventional cylinder liner finishes are now being developed to reduce friction and oil consumption, the effects of surface finish on ring-pack performance is not well understood. A rough surface flow simulation program was developed to calculate flow and stress factors that adjust the solution of the Reynolds equation for the effects of surface roughness as has been done in the literature. Rough surface contact between the ring and liner was modeled using a previously published methodology for asperity contact pressure estimation between rough surfaces.
Technical Paper

The Contribution of Different Oil Consumption Sources to Total Oil Consumption in a Spark Ignition Engine

2004-10-25
2004-01-2909
As a part of the effort to comply with increasingly stringent emission standards, engine manufacturers strive to minimize engine oil consumption. This requires the advancement of the understanding of the characteristics, sources, and driving mechanisms of oil consumption. This paper presents a combined theoretical and experimental approach to separate and quantify different oil consumption sources in a production spark ignition engine at different speed and load conditions. A sulfur tracer method was used to measure the dependence of oil consumption on engine operating speed and load. Liquid oil distribution on the piston was studied using a Laser-Induced-Fluorescence (LIF) technique. In addition, important in-cylinder parameters for oil transport and oil consumption, such as liner temperatures and land pressures, were measured.
Technical Paper

An Experimental and Theoretical Study of the Contribution of Oil Evaporation to Oil Consumption

2002-10-21
2002-01-2684
Engine oil consumption is an important source of hydrocarbon and particulate emissions in automotive engines. Oil evaporating from the piston-ring-liner system is believed to contribute significantly to total oil consumption, especially during severe operating conditions. This paper presents an extensive experimental and theoretical study on the contribution of oil evaporation to total oil consumption at different steady state speed and load conditions. A sulfur tracer method was used to measure the dependence of oil consumption on coolant outlet temperature, oil volatility, and operating speed and load in a production spark ignition engine. Liquid oil distribution on the piston was studied using a one-point Laser-Induced-Fluorescence (LIF) technique. In addition, important in-cylinder variables for oil evaporation, such as liner temperature and cylinder pressure, were measured. A multi-species cylinder liner oil evaporation model was developed to interpret the oil consumption data.
Technical Paper

Analysis of Oil Consumption Behavior during Ramp Transients in a Production Spark Ignition Engine

2001-09-24
2001-01-3544
Engine oil consumption is recognized to be a significant source of pollutant emissions. Unburned or partially burned oil in the exhaust gases contributes directly to hydrocarbon and particulate emissions. In addition, chemical compounds present in oil additives poison catalytic converters and reduce their conversion efficiency. Oil consumption can increase significantly during critical non-steady operating conditions. This study analyzes the oil consumption behavior during ramp transients in load by combining oil consumption measurements, in-cylinder measurements, and computer-based modeling. A sulfur based oil consumption method was used to measure real-time oil consumption during ramp transients in load at constant speed in a production spark ignition engine. Additionally in-cylinder liquid oil behavior along the piston was studied using a one-point Laser-Induced-Fluorescence (LIF) technique.
X