Refine Your Search

Topic

Author

Search Results

Technical Paper

Development and Testing of a Prototype Microwave Plasma Reactor for Hydrogen Recovery from Sabatier Waste Methane

2009-07-12
2009-01-2467
In the Sabatier reactor, oxygen is recovered (as water) by hydrogenation of carbon dioxide. One half of the reacted hydrogen is contained within the product water, the other half is used to form methane (CH4). Hydrogen resupply requirements for the oxygen recovery process can be minimized by reclamation of hydrogen from the methane waste. To this end, we have developed effective methods for the recovery of hydrogen from CH4 using a microwave plasma reactor. By selectively promoting the oligomerization reaction which forms hydrogen and acetylene, up to 75% of the waste hydrogen can be recovered in a manner which minimizes the carbon fouling and carbon build-up problems which drastically reduce the long-term viability of traditional methane pyrolysis methods using fixed bed and fluidized bed reactors.
Journal Article

Chemical Analysis Results for Potable Water Returned from ISS Expeditions 14 and 15

2008-06-29
2008-01-2197
The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 14 and 15. During the 12-month duration of both expeditions, the Space Shuttle docked with the ISS on four occasions to continue construction and deliver additional crew and supplies; however, no Shuttle potable water was transferred to the station during Expedition 14. Russian ground-supplied potable water and potable water from regeneration of humidity condensate were both available onboard the ISS for consumption by the Expeditions 14 and 15 crews. A total of 16 chemical archival water samples were collected with U.S. hardware during Expeditions 14 and 15 and returned on Shuttle flights STS-116 (12A.1), STS-117 (13A), STS-118 (13A.1), and STS-120 (10A) in December 2006, and June, August, and November of 2007, respectively.
Technical Paper

Sampling and Chemical Analysis of Potable Water for ISS Expeditions 12 and 13

2007-07-09
2007-01-3214
The crews of Expeditions 12 and 13 aboard the International Space Station (ISS) continued to rely on potable water from two different sources, regenerated humidity condensate and Russian ground-supplied water. The Space Shuttle launched twice during the 12-months spanning both expeditions and docked with the ISS for delivery of hardware and supplies. However, no Shuttle potable water was transferred to the station during either of these missions. The chemical quality of the ISS onboard potable water supplies was verified by performing ground analyses of archival water samples at the Johnson Space Center (JSC) Water and Food Analytical Laboratory (WAFAL). Since no Shuttle flights launched during Expedition 12 and there was restricted return volume on the Russian Soyuz vehicle, only one chemical archive potable water sample was collected with U.S. hardware and returned during Expedition 12. This sample was collected in March 2006 and returned on Soyuz 11.
Technical Paper

Catalytic Decomposition of Gaseous Byproducts from Primary Solid Waste Treatment Technologies

2006-07-17
2006-01-2128
Several solid waste management (SWM) systems currently under development for spacecraft deployment result in the production of a variety of toxic gaseous contaminants. Examples include the Plastic Melt Waste Compactor (PMWC) at NASA - Ames Research Center1, the Oxidation/Pyrolysis system at Advanced Fuel Research2, and the Microwave Powered Solid Waste Stabilization and Water Recovery (MWSWS&WR) System at UMPQUA Research Company (URC). The current International Space Station (ISS) airborne contaminant removal system, the Trace Contaminant Control Subassembly (TCCS), is designed to efficiently process nominal airborne contaminants in spacecraft cabin air. However, the TCCS has no capability to periodically process the highly concentrated toxic vapors of variable composition, which are generated during solid waste processing, without significant modifications.
Technical Paper

ISS Expeditions 10 & 11 Potable Water Sampling and Chemical Analysis Results

2006-07-17
2006-01-2015
During the twelve month period comprising Expeditions 10 and 11, the chemical quality of the potable water onboard the International Space Station (ISS) was verified through the return and ground analysis of water samples. The two-man Expedition 10 crew relied solely on Russian-provided ground water and reclaimed cabin humidity condensate as their sources of potable water. Collection of archival water samples with U.S. hardware has remained extremely restricted since the Columbia tragedy because of very limited return volume on Russian Soyuz vehicles. As a result only two such samples were collected during Expedition 10 and returned on Soyuz 9. The average return sample volume was only 250 milliliters, which limited the breadth of chemical analysis that could be performed. Despite the Space Shuttle vehicle returning to flight in July 2005, only two potable water samples were collected with U.S. hardware during Expedition 11 and returned on Shuttle flight STS-114 (LF1).
Technical Paper

Shuttle Potable Water Quality from STS-26 to STS-114

2006-07-17
2006-01-2014
Potable water for the Shuttle orbiter is generated as a by-product of electricity production by the fuel cells. Water from the fuel cells flows through a Microbial Check Valve (MCV), which releases biocidal iodine into the water before it enters one of four storage tanks. Potable water is dispensed on-orbit at the rehydration unit of the galley. Due to crew health concerns, iodine removal hardware is installed in the chilled water inlet line to the galley to remove the iodine from the potable water before it is consumed by the crew. The Shuttle water system is sampled to ensure water quality is maintained during all operational phases from the disinfection of the ground servicing equipment through the completion of each mission. This paper describes and summarizes the Shuttle water quality requirements, the servicing of the Shuttle water system, the collection and analysis of Shuttle water samples, and the results of the analyses.
Technical Paper

Chemical Characterization of U.S. Lab Condensate

2006-07-17
2006-01-2016
Approximately 50% of the water consumed by International Space Station crewmembers is water recovered from cabin humidity condensate. Condensing heat exchangers in the Russian Service Module (SM) and the United States On-Orbit Segment (USOS) are used to control cabin humidity levels. In the SM, humidity condensate flows directly from the heat exchanger to a water recovery system. In the USOS, a metal bellows tank located in the US Laboratory Module (LAB) collects and stores condensate, which is periodically off-loaded in about 20-liter batches to Contingency Water Containers (CWCs). The CWCs can then be transferred to the SM and connected to a Condensate Feed Unit that pumps the condensate from the CWCs into the water recovery system for processing. Samples of the condensate in the tank are collected during the off-loads and returned to Earth for analyses.
Technical Paper

Chemical Analysis of ISS Potable Water From Expeditions 8 and 9

2005-07-11
2005-01-2885
With the Shuttle fleet grounded, limited capability exists to resupply in-flight water quality monitoring hardware onboard the International Space Station (ISS). As such, verification of the chemical quality of the potable water supplies on ISS has depended entirely upon the collection, return, and ground-analysis of archival water samples. Despite the loss of Shuttle-transferred water as a water source, the two-man crews during Expedition 8 and Expedition 9 maintained station operations for nearly a year relying solely on the two remaining sources of potable water; reclaimed humidity condensate and Russian-launched ground water. Archival potable water samples were only collected every 3 to 4 months from the systems that regenerate water from condensate (SRV-K) and distribute stored potable water (SVO-ZV).
Technical Paper

Magnetically Assisted Gasification of Solid Wastes: Comparison of Reaction Strategies

2005-07-11
2005-01-3081
Gradient magnetically assisted fluidized bed (G-MAFB) methods are under development for the decomposition of solid waste materials in microgravity and hypogravity environments. The G-MAFB has been demonstrated in both laboratory and microgravity flight experiments. In this paper we summarize the results of gasification reactions conducted under a variety of conditions, including: combustion, pyrolysis (thermal decomposition), and steam reforming with and without oxygen addition. Wheat straw, representing a typical inedible plant biomass fraction, was chosen for this study because it is significantly more difficult to gasify than many other typical forms of solid waste such as food scraps, feces, and paper. In these experiments, major gasification products were quantified, including: ash, char, tar, carbon monoxide, carbon dioxide, methane, oxygen, and hydrogen.
Technical Paper

Magnetically Assisted Filtration of Solid Wastes: Laboratory and Flight Experiments

2005-07-11
2005-01-3082
Solid wastes can be separated from aqueous streams and concentrated by filtration in a magnetically assisted fluidized bed. In this work the filtration of solid waste materials using filter beds consisting of granular ferromagnetic media is demonstrated. The degree of bed consolidation (or conversely fluidization) is controlled by the application of magnetic forces. In the Magnetically Assisted Gasification (MAG) process, solids are first entrapped by filtration, and then fluidized and transferred to a high temperature reactor where they are thermally decomposed. The maximum particle loading for the filter bed is determined by the intergranular void space. Using magnetic methods, it is possible to manipulate the degree of compaction as the filtration progresses to increase the void space and thereby maximize the loading capacity and efficiency of the filter. This process is completely compatible with operation in microgravity and hypogravity.
Technical Paper

ISS Potable Water Sampling and Chemical Analysis: Expeditions 6 & 7

2004-07-19
2004-01-2537
Ever since the first crew arrived at the International Space Station (ISS), archival potable water samples have been collected and returned to the ground for detailed chemical analysis in order to verify that the water supplies onboard are suitable for crew consumption. The Columbia tragedy, unfortunately, has had a dramatic impact on continued ISS operations. A major portion of the ISS water supply had previously consisted of Shuttle-transferred water. The other two remaining sources of potable water, i.e., reclaimed humidity condensate and Russian-launched ground water, are together insufficient to maintain 3-person crews. The Expedition 7 crew launched in April of 2003 was, therefore, reduced from three to two persons. Without the Shuttle, resupply of ISS crews and supplies is dependent entirely on Russian launch vehicles (Soyuz and Progress) with severely limited up and down mass.
Technical Paper

Development of Enabling Technologies for Magnetically Assisted Gasification of Solid Wastes

2003-07-07
2003-01-2374
Magnetically Assisted Gasification (MAG) is a relatively new concept for the destruction of solid wastes aboard spacecraft, lunar and planetary habitations. Three sequential steps are used to convert the organic constituents of waste materials into useful gases: filtration, gasification, and ash removal. In the filtration step, an aqueous suspension of comminuted waste is separated and concentrated using a magnetically consolidated depth filter composed of granular ferromagnetic media. Once the filter is fully loaded, the entrapped solids are thermochemically gasified via a variety of mechanisms including pyrolysis, isomerization, and oxidation reactions. Finally, the inorganic ash residue is removed from the magnetic media by fluidization and trapped downstream by filtration. Importantly, for each of these steps, the degree of consolidation or fluidization of the granular ferromagnetic media is controlled using magnetic forces.
Technical Paper

ISS Total Organic Carbon Analyzer Status Update - 2003

2003-07-07
2003-01-2403
The Crew Health Care System (CHeCS) is responsible for providing environmental monitoring to protect crew health, including in-flight chemical water quality analysis. To meet this objective, Total Organic Carbon Analyzer (TOCA) Serial Number (SN) 1002 was launched to the International Space Station (ISS) in April of 2001 as part of the CHeCS hardware. Since that time it has been used to evaluate the quality of the potable water supplies consisting of reprocessed atmospheric condensate water, Shuttle-transferred water, and ground-supplied water. Potable water is available for crew use from the Service Module System for Regeneration of Water from Condensate (SRV-K) galley hot and warm ports and the Stored Potable Water System (SVO-ZV) port. Potable water samples are periodically collected from each of these ports for in-flight analysis with the TOCA.
Technical Paper

Chemical Sampling and Analysis of ISS Potable Water: Expeditions 1-3

2002-07-15
2002-01-2537
The early International Space Station (ISS) drinking water supply primarily consists of water recovered from humidity condensate and water transferred from Shuttle. The water is dispensed both from the stored water dispensing system (SVO-ZV) and the galley, which is an integral part of the condensate recovery system. The galley provides both hot and tepid water. An assessment of the quality of each potable water source is underway and consists of periodic collection of samples into Teflon® bags for return to Earth via Shuttle. Water sampling hardware and procedures developed and used during the Shuttle-Mir program are employed on ISS without significant changes. This report provides results from detailed chemical analyses of recovered potable water and supplied (stored) water samples returned from ISS Expeditions 1 through 3. These results have been used to monitor the potability of the product and stored drinking water by comparing the results against water quality standards.
Technical Paper

Ambient Temperature Removal of Problematic Organic Compounds from ISS Wastewater

2002-07-15
2002-01-2534
Small, highly polar organics such as urea, alcohols, acetone, and glycols are not easily removed by the International Space Station's Water Recovery System. The current design utilizes the Volatile Removal Assembly (VRA) which operates at 125°C to catalytically oxidize these contaminants. Since decomposition of these organics under milder conditions would be beneficial, several ambient temperature biocatalytic and catalytic processes were evaluated in our laboratory. Enzymatic oxidation and ambient temperature heterogeneous catalytic oxidation of these contaminants were explored. Oxidation of alcohols proceeded rapidly using alcohol oxidase; however, effective enzymes to degrade other contaminants except urea were not found. Importantly, both alcohols and glycols were efficiently oxidized at ambient temperature using a highly active, bimetallic noble metal catalyst.
Technical Paper

ISS Total Organic Carbon Analyzer - 2002 Status

2002-07-15
2002-01-2533
Potable water supplies onboard the International Space Station (ISS) include both reclaimed water from treatment of atmospheric humidity condensate and stored water that is either Shuttle-transferred or ground-supplied. Space station medical operations requirements call for real-time monitoring of key water quality parameters, such as total organic carbon, total inorganic carbon, total carbon, pH, and conductivity, to ensure that crew health is protected from unsafe drinking water. A Total Organic Carbon Analyzer (TOCA) designed to meet these requirements was developed as part of the Crew Health Care System and launched to the ISS in April of 2001. The initial design of the ISS TOCA was previously presented at this conference in 1998. The current design of the instrument includes an improved reagent system and upgraded software to enhance accuracy through the capability to measure organic contamination of the reagents and correct analytical results.
Technical Paper

Quality of Water Supplied by Shuttle to ISS

2002-07-15
2002-01-2532
The water supply for the International Space Station (ISS) consists partially of excess fuel-cell water that is treated on the Shuttle and stored on ISS in 44 L collapsible Contingency Water Containers (CWCs). Iodine is removed from the source water, and silver biocide and mineral concentrates are added by the crewmember while the CWCs are filled. Potable (mineralized) CWCs are earmarked for drinking and food hydration, and technical (non-mineralized) CWCs are reserved for waste system flushing and electrolytic oxygen generation. Representative samples are collected in Teflon® bags and returned to Earth for chemical analysis. The parameters typically measured include pH, conductivity, total organic carbon, iodine, silver, calcium, magnesium, fluoride, trace metals, formate and alcohols. The Nylon monomer caprolactam is also measured and tracked since it is known to leach slowly out of the plastic CWC bladder material.
Technical Paper

Identification of an Organic Impurity Leaching from a Prototype ISS Water Container

2001-07-09
2001-01-2125
Collapsible bladder tanks called Contingency Water Containers (CWCs) have been used to transfer water from the Shuttle to the Mir and the International Space Station (ISS). Because their use as potable water storage on the ISS is planned for years, efforts are underway to improve the containers, including the evaluation of new materials. Combitherm®, a multi-layer plastic film, is a material under evaluation for use as the CWC bag material. It consists of layers of linear low density polyethylene, ethylene-vinyl alcohol copolymer, nylon, and a solvent- free adhesive layer. Long term studies of the quality of water stored in Combitherm bladders indicate a gradual but steady increase in the total organic carbon value. This suggests a leaching or breakdown of an organic component of the Combitherm.
Technical Paper

A Spectrophotometric Analyzer for Aqueous Samples in Microgravity

1999-07-12
1999-01-2032
The development of a spectrophotometric analyzer for use on water samples in microgravity environments is discussed. The instrument is constructed around a commercial spectrophotometer, the Hewlett-Packard HP8453, with a separate turbidimetric analyzer, here a modified Hach 2100P ratio turbidimeter. Flow-through sample cells were constructed for each instrument to support microgravity use and sample deaeration. Spectrophotometric analyses on aqueous samples on orbit are sensitive to the presence of undissolved gases in the samples. In a micro-g environment, free gas in samples can and does remain suspended, clouding the mixture and interfering with spectral optical density measurements. This paper discusses the design of a spectrophotometric analyzer, with particular emphasis on the merits of two approaches to eliminating free gas interferences in on-orbit water analyses: hyperbaric gas redissolution and deaeration across a hydrophobic membrane.
Technical Paper

On Demand Electrochemical Production of Reagents to Minimize Resupply of Expendables

1999-07-12
1999-01-2181
The electrosynthesis of expendable reagents including acids, bases, and oxidants from simple salts or salt mixtures has been demonstrated using a variety of electrochemical cells. A five chambered electrodialytic water splitting (EDWS) cell with bipolar membranes was utilized to efficiently convert sodium sulfate, sodium chloride, potassium nitrate, and potassium chloride to conjugate acids and bases. With the same cell, selective segregation of cations and anions from mixed salt solutions occurred, resulting in relatively pure acids and bases. These results suggest that pure acids and bases can be produced from composite spacecraft brines. Chemical oxidants such as sodium and ammonium persulfate were also synthesized with high current efficiencies by the electrooxidation of salts and acids in a two chambered electrochemical cell.
X