Refine Your Search

Topic

Author

Search Results

Standard

Free Motion Headform Impact Tests of Heavy Truck Cab Interiors

2024-04-25
WIP
J2424
This SAE Recommended Practice describes the test procedures for conducting free motion headform testing of heavy truck cab interior surfaces and components. A description of the test set-up, instrumentation, impact configuration, target locations, and data reduction is included.
Standard

Air Brake Actuator Test Procedure, Truck-Tractor, Bus, and Trailers

2024-04-24
WIP
J1469
This SAE Recommended Practice provides procedures and methods for testing service, spring applied parking, and combination brake actuators with respect to durability, function, and environmental performance. A minimum of six test units designated A, B, C, D, E, and F are to be used to perform all tests per 1.1 and 1.2.
Standard

Low-Duty Inertia Dynamometer Hydraulic Brake Wear Test Procedures for Vehicles Above 4536 kg (10000 pounds) of GVWR

2024-04-24
WIP
J3006
This Recommended Practice is derived from OEM and tier-1 laboratory tests and applies to two-axle multipurpose passenger vehicles, or trucks with a GVWR above 4536 kg (10 000 pounds) equipped with hydraulic disc or drum service brakes. Before conducting testing for a specific brake sizes or under specific test conditions, review, agree upon, and document with the test requestor any deviations from the test procedure. Also, the applicable criteria for the final test results and wear rates deemed as significantly different require definition, assessment, and proper documentation; especially as this will determine whether or not Method B testing is needed. This Recommended Practice does not evaluate or quantify other brake system characteristics such as performance, noise, judder, ABS performance, or braking under extreme temperatures or speeds. Minimum performance requirements are not part of this recommended practice.
Standard

Trailer Grade Parking Performance Test Procedure

2024-04-23
WIP
J1452
This SAE Recommended Practice establishes methods to determine grade parking performance with respect to:a. Ability of the parking brake system to lock the braked wheels.b. The trailer holding or sliding on the grade, fully loaded, or unloaded.c. Applied manual effort.d. Unburnished or burnished brake lining friction conditions.e. Down and upgrade directions.
Standard

Safety Assessment of Transport Airplanes in Commercial Service

2024-04-16
WIP
ARP5150B
This document describes guidelines, methods, and tools used to perform the ongoing safety assessment process for transport airplanes in commercial service (hereafter, termed “airplane”). The process described herein is intended to support an overall safety management program. It is associated with showing compliance with the regulations, and also with assuring a company that it meets its own internal standards. The methods identify a systematic means, but not the only means, to assess ongoing safety.While economic decision-making is an integral part of the safety management process, this document addresses only the ongoing safety assessment process. To put it succinctly, this document addresses the “Is it safe?” part of safety management; it does not address the “How much does it cost?” part of the safety management.This document also does not address any specific organizational structures for accomplishing the safety assessment process.
Standard

Safety Assessment of General Aviation Airplanes and Rotorcraft in Commercial Service

2024-04-16
WIP
ARP5151B
This document describes a process that may be used to perform the ongoing safety assessment for (1) GAR aircraft and components (hereafter, aircraft), and (2) commercial operators of GAR aircraft. The process described herein is intended to support an overall safety management program. It is to help a company establish and meet its own internal standards. The process described herein identifies a systematic means, but not the only means, to assess continuing airworthiness.Ongoing safety management is an activity dedicated to assuring that risk is identified and properly eliminated or controlled. The safety management process includes both safety assessment and economic decision-making. While economic decision-making (factors related to scheduling, parts, and cost) is an integral part of the safety management process, this document addresses only the ongoing safety assessment process.
Standard

Safety-Security Interactions for Aircraft/System Development

2024-04-03
WIP
AIR8480
Generate guidance and example(s) regarding Airworthiness Security inputs to the Aircraft/System Development Processes in ARP 4754B sections 4.2 thru 4.6, and section 6. Also, clarify any essential output(s) from the Aircraft/System Development Processes that the Airworthiness Security Process DO-326A requires as input(s).
Standard

Forward Collision Warning and Automatic Emergency Braking XIL Simulation Procedure and Minimum Performance Requirements - Truck and Bus

2024-03-25
WIP
J3319
This SAE Recommended Practice (RP) establishes uniform vehicle level simulation procedure for Forward Collision Avoidance and Mitigation (FCAM) systems (also identified as Automatic Emergency Braking (AEB) systems) used in highway commercial vehicles and coaches greater than 4535 Kg (10,000 lb.) GVWR. For Hardware-in-the-loop implementation of the recommended practice, the ESC system will be part of the test. This RP does not apply to trailers, dollies, etc. and does not intend to exclude any particular system or sensor technology. These FCAM systems utilize various methodologies to identify, track and communicate data to the operator and vehicle systems to warn, intervene and/or mitigate in the longitudinal control of the vehicle.
Standard

Heavy Duty Truck and Bus Electrical Circuit Performance Requirement for 12/24-Volt Electric Starter Motors

2024-03-22
CURRENT
J3053_202403
The recommended practice describes a design standard that defines the maximum recommended voltage drop of the starting motor main circuits, as well as control system circuits, for 12/24-V starter systems. The battery technologies used in developing this document include the flooded lead acid, gel cell, and AGM. Starting systems supported by NiCd, Lithium Ion, NiZn, etc., or Ultracaps are not included in this document. This document is not intended to be updated or modified to include starter motors rated at voltages above the nominal 24-V electrical system. The starter is basically an electrical-to-mechanical power converter. If you double the available battery power in, you double the peak mechanical power out and double the heat losses. This means that we have to pay special attention to how battery power changes when we change the battery voltage and the effects it may have in overpowering the cranking system.
Standard

Contiguous Aircraft/System Development Process Example

2024-03-12
CURRENT
AIR6110A
This AIR provides a detailed example of the aircraft and systems development for a function of a hypothetical S18 aircraft. In order to present a clear picture, an aircraft function was broken down into a single system. A function was chosen which had sufficient complexity to allow use of all the methodologies, yet was simple enough to present a clear picture of the flow through the process. This function/system was analyzed using the methods and tools described in ARP4754A/ED-79A. The aircraft level function is “Decelerate Aircraft On Ground” and the system is the braking system. The interaction of the braking system functions with the aircraft are identified with the relative importance based on implied aircraft interactions and system availabilities at the aircraft level. This example does not include validation and verification of the aircraft level hazards and interactions with the braking system.
Standard

SAE Child Passenger Safety Glossary

2024-03-01
CURRENT
J2939_202403
To harmonize and define terminology associated with occupant protection for children for vehicle manufacturers and child restraint manufacturers in the United States and Canada.
Standard

SAE Instrumented Arm User’s Manual

2024-02-27
CURRENT
J2855_202402
This user’s manual covers the instrumented arm for the Hybrid III 5th Percentile Small Female dummy as well as the SID –IIs dummy. It is intended for technicians and engineers who have an interest in assessing arm injury from the use of frontal and side impact airbags. It covers the construction, disassembly and reassembly, available instrumentation, and segment masses.
Standard

Accelerated Exposure of Automotive Interior Trim Components Using a Controlled Irradiance Xenon-Arc Apparatus

2024-02-23
CURRENT
J2412_202402
This test method specifies the operating procedures for a controlled-irradiance, xenon-arc apparatus used for the accelerated exposure of various automotive interior trim components. Test duration, as well as any exceptions to the specimen preparation and performance evaluation procedures contained in this document, are covered in material specifications of the different automotive manufacturers. Any deviation to this test method, such as the use of optical filter combinations, is to be agreed upon by contractual parties.
Standard

Applying SOTIF to Aviation Autonomy

2024-01-20
WIP
AIR8622
Looking at the Automotive ISO 21448 Standard for Safety of Intended Functionality, and see how it maps to the System Development and Safety Processes in Aviation as dictated by ARP4754A and ARP476.
Standard

Use of the Critical Speed Formula

2024-01-17
CURRENT
J2969_202401
This SAE Recommended Practice provides guidelines for procedures and practices used to obtain and record measurements and to analyze the results of the critical speed method. It is for use at accident sites using manual or electronic measurements. The method allows for many unique factors and the recommended procedure will permit a consistent use of the method in order to reduce errors and uncertainty in the results. The results from the critical speed formula should always, when possible, be compared to other accident reconstruction methodologies. When different accident reconstruction methods are used, the uncertainty of each method should be analyzed and presented.
Standard

Truck Tractor Power Outlet for Trailer ABS

2024-01-10
CURRENT
J2247_202401
This SAE Recommended Practice identifies the minimum truck tractor electrical power output of the stop lamp and ABS (antilock brake system) circuits measured at the primary SAE J560 tractor trailer interface connector(s).
Standard

Applying Development Assurance with Model Based Systems Engineering

2024-01-09
WIP
AIR9953
MBSE is a relatively new technology. The purpose of this document is to demonstrate how Development Assurance may be applied in an MBSE based development program. This will be performed by utilizing the example in Appendix E of ARP4754B and showing an example of the Development Assurance activities and artifacts in an MBSE context.
Standard

Heavy-Duty Wiring Systems for On-Highway Trucks

2024-01-09
CURRENT
J2202_202401
This SAE Recommended Practice provides general guidelines on the material selection, construction, and qualification of components and wiring systems used to construct nominal 12 VDC and/or 24 VDC electrical wiring systems for heavy-duty vehicles The guidelines are limited to nominal 12 VDC and/or 24 VDC primary wiring systems and includes cable sizes American Wire Gage 20 to AWG 4 on heavy-duty on-highway trucks. The document identifies appropriate operating performances requirements. This document excludes the male-to-female connection of the SAE J560 connectors.
X