Refine Your Search

Topic

Author

Search Results

Standard

ARP4754B Clarification Notice

2024-05-10
WIP
AIR4757
ARP4754B Clarification Notice to address typographical errors and clarify portions of the document to facilitate usage of the newly released ARP4754B.
Standard

Safety Assessment of Transport Airplanes in Commercial Service

2024-04-16
WIP
ARP5150B
This document describes guidelines, methods, and tools used to perform the ongoing safety assessment process for transport airplanes in commercial service (hereafter, termed “airplane”). The process described herein is intended to support an overall safety management program. It is associated with showing compliance with the regulations, and also with assuring a company that it meets its own internal standards. The methods identify a systematic means, but not the only means, to assess ongoing safety.While economic decision-making is an integral part of the safety management process, this document addresses only the ongoing safety assessment process. To put it succinctly, this document addresses the “Is it safe?” part of safety management; it does not address the “How much does it cost?” part of the safety management.This document also does not address any specific organizational structures for accomplishing the safety assessment process.
Standard

Safety Assessment of General Aviation Airplanes and Rotorcraft in Commercial Service

2024-04-16
WIP
ARP5151B
This document describes a process that may be used to perform the ongoing safety assessment for (1) GAR aircraft and components (hereafter, aircraft), and (2) commercial operators of GAR aircraft. The process described herein is intended to support an overall safety management program. It is to help a company establish and meet its own internal standards. The process described herein identifies a systematic means, but not the only means, to assess continuing airworthiness.Ongoing safety management is an activity dedicated to assuring that risk is identified and properly eliminated or controlled. The safety management process includes both safety assessment and economic decision-making. While economic decision-making (factors related to scheduling, parts, and cost) is an integral part of the safety management process, this document addresses only the ongoing safety assessment process.
Standard

Safety-Security Interactions for Aircraft/System Development

2024-04-03
WIP
AIR8480
Generate guidance and example(s) regarding Airworthiness Security inputs to the Aircraft/System Development Processes in ARP 4754B sections 4.2 thru 4.6, and section 6. Also, clarify any essential output(s) from the Aircraft/System Development Processes that the Airworthiness Security Process DO-326A requires as input(s).
Standard

Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion

2024-04-02
WIP
ARP6420A
The turbine-engine-inlet flow distortion descriptors summarized in this document apply to the effects of inlet total-pressure, planar-wave, and total-temperature distortions. Guidelines on stability margin, destabilizing influences, types and purposes of inlet data, AIP definition, and data acquisition and handling are summarized from AIR5866, AIR5867, ARP1420, and AIR1419. The degree to which these recommendations are applied to a specific program should be consistent with the complexity of the inlet/engine integration. Total-pressure distortion is often the predominant destabilizing element that is encountered and is often the only type of distortion to be considered, i.e, not all types of distortion need to be considered for all vehicles.
Standard

Contiguous Aircraft/System Development Process Example

2024-03-12
CURRENT
AIR6110A
This AIR provides a detailed example of the aircraft and systems development for a function of a hypothetical S18 aircraft. In order to present a clear picture, an aircraft function was broken down into a single system. A function was chosen which had sufficient complexity to allow use of all the methodologies, yet was simple enough to present a clear picture of the flow through the process. This function/system was analyzed using the methods and tools described in ARP4754A/ED-79A. The aircraft level function is “Decelerate Aircraft On Ground” and the system is the braking system. The interaction of the braking system functions with the aircraft are identified with the relative importance based on implied aircraft interactions and system availabilities at the aircraft level. This example does not include validation and verification of the aircraft level hazards and interactions with the braking system.
Standard

SAE Child Passenger Safety Glossary

2024-03-01
CURRENT
J2939_202403
To harmonize and define terminology associated with occupant protection for children for vehicle manufacturers and child restraint manufacturers in the United States and Canada.
Standard

SAE Instrumented Arm User’s Manual

2024-02-27
CURRENT
J2855_202402
This user’s manual covers the instrumented arm for the Hybrid III 5th Percentile Small Female dummy as well as the SID –IIs dummy. It is intended for technicians and engineers who have an interest in assessing arm injury from the use of frontal and side impact airbags. It covers the construction, disassembly and reassembly, available instrumentation, and segment masses.
Standard

Unmanned Systems (UxS) Control Segment (UCS) Architecture: RSA Version of UCS ICD Model

2024-02-23
CURRENT
AIR6516A
This User Guide describes the content of the Rational Software Architect (RSA) version of the UCS Architectural Model and how to use this model within the RSA modeling tool environment. The purpose of the RSA version of the UCS Architectural Interface ICD model is to provide a model for Rational Software Architect (RSA) users, derived from the Enterprise Architect (EA) ICD model (AIR6515). The AIR6515 EA Model, and by derivation, the AIR6516 RSA Model, have been validated to contain the same content as the AS6518 model for: all UCS ICD interfaces all UCS ICD messages all UCS ICD data directly or indirectly referenced by ICD messages and interfaces the Domain Participant, Information, Service and Non-Functional Properties Models
Standard

Sensor Driven Restraint Systems

2024-01-26
WIP
AS7260
• AIRBAG COMPONENT MINIMUM PERFORMANCE REQUIREMENTS • AIRBAG INSTALLATION PERFORMANCE REQUIREMENT Current revision will only contain Part 25 and lapbelt installed airbags. Future revisions will expand to include Structural airbags, 3-point restraint airbag, pre-tensioner etc.
Standard

Applying SOTIF to Aviation Autonomy

2024-01-20
WIP
AIR8622
Looking at the Automotive ISO 21448 Standard for Safety of Intended Functionality, and see how it maps to the System Development and Safety Processes in Aviation as dictated by ARP4754A and ARP476.
Standard

Use of the Critical Speed Formula

2024-01-17
CURRENT
J2969_202401
This SAE Recommended Practice provides guidelines for procedures and practices used to obtain and record measurements and to analyze the results of the critical speed method. It is for use at accident sites using manual or electronic measurements. The method allows for many unique factors and the recommended procedure will permit a consistent use of the method in order to reduce errors and uncertainty in the results. The results from the critical speed formula should always, when possible, be compared to other accident reconstruction methodologies. When different accident reconstruction methods are used, the uncertainty of each method should be analyzed and presented.
Standard

Applying Development Assurance with Model Based Systems Engineering

2024-01-09
WIP
AIR9953
MBSE is a relatively new technology. The purpose of this document is to demonstrate how Development Assurance may be applied in an MBSE based development program. This will be performed by utilizing the example in Appendix E of ARP4754B and showing an example of the Development Assurance activities and artifacts in an MBSE context.
Standard

Operator Enclosure Pressurization System Test Procedure

2023-12-07
CURRENT
J1012_202312
This SAE Recommended Practice establishes a uniform test procedure for evaluating performance of operator enclosure pressurization systems for construction, general-purpose industrial, agricultural, forestry, and specialized mining machinery as categorized in SAE J1116 for off-road, self-propelled work machines.
Standard

Methods to Evaluate Impact Characteristics of Seat Back Mounted IFE Monitors

2023-12-06
WIP
ARP6330A
This SAE Aerospace Recommended Practice (ARP) defines means to assess the effect of changes to seat back mounted IFE monitors on blunt trauma to the head and post-impact sharp edges. The assessment methods described may be used for evaluation of changes to seat back monitor delethalization (blunt trauma and post-test sharp edges) and head injury criterion (HIC) attributes (refer to ARP6448 Appendix A Items 3 and 6, respectively). Application is focused on type A-T (transport airplane) certified seat installations.
Standard

Impact Characteristics of Seat Back Mounted IFE Monitors - Basis for ARP6330

2023-12-06
WIP
AIR6908A
This document provides background information, rationale, and data (both physical testing and computer simulations) used in defining the component test methods and similarity criteria described in SAE Aerospace Recommended Practice (ARP) 6330. ARP6330 defines multiple test methods uses to assess the effect of seat back mounted IFE monitor changes on blunt trauma to the head and post-impact sharp edge generation. The data generated is based on seat and IFE components installed on type A-T (transport airplane) certified aircraft. While not within the scope of ARP6330, generated test data for the possible future development of surrogate target evaluation methods is also included.
Standard

Gaining Approval for Seats with Integrated Electronics in Accordance with AC 21-49 Section 7.b

2023-11-10
WIP
ARP6448B
This SAE Aerospace Recommended Practice (ARP) provides a framework for establishing methods and stakeholder responsibilities to ensure that seats with integrated electronic components (e.g., actuation system, reading light, inflatable restraint, inflight entertainment equipment, etc.) meet the seat TSO minimum performance standard. These agreements will allow seat suppliers to build and ship TSO-approved seats with integrated electronic components. The document presents the roles and accountabilities of the electronics manufacturer (EM), the seat supplier, and the TC/ATC/STC applicant/holder in the context of AC 21-49 Section 7.b (“Type Certification Using TSO-Approved Seat with Electronic Components Defined in TSO Design”). This document applies to all FAA seat TSOs C39( ), C127( ), etc.The document defines the roles and responsibilities of each party involved in the procurement of electronics, their integration on a TSO-approved seat, and the seat’s installation on an aircraft.
Standard

Constructing Development Assurance Plan for Integrated Systems

2023-10-17
WIP
AIR6218A
This SAE Aerospace Information Report (AIR) supplements ARP4754B by identifying the crucial elements to be considered when constructing the development assurance plans described in Chapter 3 (Development Planning) of ARP4754B for integrated systems. This AIR presents a collection of lessons learned from past certification programs involving integrated systems. This AIR is not guidance for system integration technologies.
X