Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Pressure Effects on the Self-Extinguishment Limits of Aerospace Materials

2009-07-12
2009-01-2490
The Orion Crew Exploration Vehicle Module (CM) is being designed to operate in an atmosphere of up to 30% oxygen at a pressure of 10.2 psia for lunar missions. Spacecraft materials selection is based on a normal gravity upward flammability test conducted in a closed chamber under the worst expected conditions of pressure and oxygen concentration. Material flammability depends on both oxygen concentration and pressure, but since oxygen concentration is the primary driver, all materials are certified in the 30% oxygen, 10.2 psia environment. Extensive data exist from the Shuttle Program at this condition, which used essentially the same test methodology as the Constellation Program is currently using. Raising the partial pressure of oxygen in the Orion CM immediately before reentry, while maintaining the total cabin pressure at 14.7 psia, has been proposed to maximize the time the crew is able to breathe cabin air after splashdown.
Technical Paper

Phase Change Material Heat Exchanger Life Test

2009-07-12
2009-01-2589
Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a “thermal capacitor,” storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions.
Technical Paper

Development of Urine Receptacle Assembly for the Crew Exploration Vehicle

2008-06-29
2008-01-2144
The Urine Receptacle Assembly (URA) initially was developed for Apollo as a primary means of urine collection. The aluminum housing with stainless steel honeycomb insert provided all male crewmembers with a non-invasive means of micturating into a urine capturing device and then venting to space. The performance of the URA was a substantial improvement over previous devices but its performance was not well understood. The Crew Exploration Vehicle (CEV) program is exploring the URA as a contingency liquid waste management system for the vehicle. URA improvements are required to meet CEV requirements, including consumables minimization, flow performance, acceptable hygiene standards, crew comfort, and female crewmember capability. This paper presents the results of a historical review of URA performance during the Apollo program, recent URA performance tests on the reduced gravity aircraft under varying flow conditions, and a proposed development plan for the URA to meet CEV needs.
Technical Paper

Corrosion Testing of Brazed Space Station IATCS Materials

2004-07-19
2004-01-2471
Increased nickel concentrations in the IATCS coolant prompted a study of the corrosion rates of nickel-brazed heat exchangers in the system. The testing has shown that corrosion is occurring in a silicon-rich intermetallic phase in the braze filler of coldplates and heat exchangers as the result of a decrease in the coolant pH brought about by cabin carbon dioxide permeation through polymeric flexhoses. Similar corrosion is occurring in the EMU de-ionized water loop. Certain heat exchangers and coldplates have more silicon-rich phase because of their manufacturing method, and those units produce more nickel corrosion product. Silver biocide additions did not induce pitting corrosion at silver precipitate sites.
Technical Paper

Active Thermal Control Systems for Lunar and Martian Exploration

1990-07-01
901243
Extended manned missions to the lunar and martian surfaces pose new challenges for active thermal control systems (ATCS's). Moderate-temperature heat rejection becomes a problem during the lunar day, when the effective sink temperature exceeds that of the heat-rejection system. The martian atmosphere poses unique problems for rejecting moderate-temperature waste heat because of the presence of carbon dioxide and dust. During a recent study, several ATCS options including heat pumps, radiator shading devices, and single-phase flow loops were considered. The ATCS chosen for both lunar and martian habitats consists of a heat pump integral with a nontoxic fluid acquisition and transport loop, and vertically oriented modular reflux-boiler radiators. The heat pump operates only during the lunar day. The lunar and martian transfer vehicles have an internal single-phase water-acquisition loop and an external two-phase ammonia rejection system with rotating inflatable radiators.
Technical Paper

Display Comparison for Six-Degree-of-Freedom Force/Torque Control

1985-10-14
851860
A device has been developed (by others) which senses and displays forces and torques generated at the end of a manipulator arm. This device was integrated and evaluated in the one-g version of the Space Transportation System Canadian remote manipulator system arm at the NASA Lyndon B. Johnson Space Center. Evaluations of astronaut performance and preference under varying task conditions and using alternative display formats were performed. Findings indicate that providing visual graphic feedback of force and torque information affects both the time taken to do manipulator tasks and the size of forces generated during these tasks. Also, the format of graphics used affects operator reaction time.
Technical Paper

The Shuttle Orbiter Thermal Protection System Materials, Designs, and Flight Performance Overview

1983-07-11
831118
The design requirements for the Orbiter thermal protection system (TPS), the various TPS materials that are used, the different design approaches associated with each of the materials, and the performance experienced during the flight test program are described. The first five flights of the Orbiter Columbia have provided the necessary data to verify the TPS thermal performance, structural integrity, and reusability. The flight performance characteristics of each TPS material are discussed. This discussion is based on postflight inspections and postflight interpretation of the flight instrumentation data. The flights to date indicate that the thermal and structural design requirements for the Orbiter TPS have been met and that the overall performance has been outstanding.
X