Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Multi-Scale Modeling of Selective Laser Melting Process

2024-06-01
2024-26-0415
The Selective Laser Melting (SLM) process is employed in high-precision layer-by-layer Additive Manufacturing (AM) on powder bed and aims to fabricate high-quality structural components. To gain a comprehensive understanding of the process and its optimization, both modeling and simulation in conjunction with extensive experimental studies along with laser calibration studies have been attempted. Multiscale and multi-physics-based simulations have the potential to bring out a new level of insight into the complex interaction of laser melting, solidification, and defect formation in the SLM parts. SLM process encompasses various physical phenomena during the formation of metal parts, starting with laser beam incidence and heat generation, heat transfer, melt/fluid flow, phase transition, and microstructure solidification. To effectively model this Multiphysics problem, it is imperative to consider different scales and compatible boundary conditions in the simulations.
Technical Paper

Energy Consumption in Lightweight Electric Aircraft

2024-06-01
2024-26-0403
Electric aircraft have emerged as a promising solution for sustainable aviation, aiming to reduce greenhouse gas emissions and noise pollution. Efficiently estimating and optimizing energy consumption in these aircraft is crucial for enhancing their design, operation, and overall performance. This paper presents a novel framework for analyzing and modeling energy consumption patterns in lightweight electric aircraft. A mathematical model is developed, encompassing key factors such as aircraft weight, velocity, wing area, air density, coefficient of drag, and battery efficiency. This model estimates the total energy consumption during steady-level flight, considering the power requirements for propulsion, electrical systems, and auxiliary loads. The model serves as the foundation for analyzing energy consumption patterns and optimizing the performance of lightweight electric aircraft.
Technical Paper

Hybrid Cooling System for Thermal Management in Electric Aerial Vehicles

2024-06-01
2024-26-0468
Continuous improvements and innovations towards sustainability in the aviation industry has brought interest in electrified aviation. Electric aircrafts have short missions in which the temporal variability of thermal loads are high. Lithium-ion (Li-ion) batteries have emerged as prominent power source candidate for electric aircrafts and Urban Air Mobility (UAM). UAMs and Electric aircrafts have large battery packs with battery capacity ranging in hundreds or thousands of kWh. If the battery is exposed to temperatures outside the optimum range, the life and the performance of the battery reduces drastically. Hence, it is crucial to have a Thermal Management System (TMS) which would reduce the heat load on battery in addition to cabin, and machinery thermal loads. Thermal management can be done through active or passive cooling. Adding a passive cooling system like Phase Change Material (PCM) to the TMS reduces the design maximum thermal loads.
Event

Exhibit & Sponsor - 2025 AeroTech

2024-05-01
Secure your space! Reserve your AeroTech exhibit booth and/or sponsorship today — and take advantage of early-bird opportunities at AeroTech® 2024.
Event

Program - 2024 AeroTech

2024-05-01
Explore AeroTech's Key Tracks, Sessions, and Presentations on hot topics in the Aerospace industry.
Event

Exhibit & Sponsor - 2025 AeroTech

2024-05-01
Secure your space! Reserve your AeroTech exhibit booth and/or sponsorship today — and take advantage of early-bird opportunities at AeroTech® 2024.
Event

AeroTech

2024-05-01
AeroTech is your passport to explore the most remarkable advancements in aerospace technology. Form supersonic aircraft to sustainable aviation and propulsion, AeroTech covers it all.
Event

Contact - AeroTech®

2024-05-01
Contact the AeroTech team for any questions around exhibiting, sponsorship, event programming, and more.
Event

Social Media Toolkit - 2024 AeroTech®

2024-05-01
Check out the topics of discussion at the 2024 AeroTech event, such as aircraft systems, advanced air mobility, manufacturing and materials, and so much more!
Technical Paper

Ultra-Downsizing of ICEs Based on True Atkinson Cycle Implementations. Thermodynamic Analysis and Comparison on the Indicated Fuel Conversion Efficiency of Atkinson and Classical ICE Cycles

2024-04-09
2024-01-2096
Ultra-Downsizing (UD) was introduced as an even higher level of downsizing for Internal Combustion Engines ICEs, see [2] SAE 2015-01-1252. The introduction of Ultra Downsizing (UD) aims to enhance the power, efficiency, and sustainability of ICEs while maintaining the thermal and mechanical strain within acceptable limits. The following approaches are utilized: 1 True Atkinson Cycles are implemented utilizing an asymmetrical crank mechanism called Variable Compression and Stroke Ratios (VCSR). This mechanism allows for extended expansion stroke and continuous adjustment of the Volumetric Compression Ratio (VCR). 2 Unrestricted two or more stage high-pressure turbocharging and intensive intercooling: This setup enables more complete filling of the cylinder and reduces the compression work on the piston, resulting in higher specific power and efficiency. 3 The new Load Control (LC) approach is based to continuous VCR adjustment.
Technical Paper

Formula 1 Race Car Aerodynamics: Understanding Floor Flow Structures and Why It Is a Key Component in Modern Racing

2024-04-09
2024-01-2078
This paper delves into the intricate realm of Formula 1 race car aerodynamics, focusing on the pivotal role played by floor flow structures in contemporary racing. The aerodynamic design of the floor of a Formula 1 car is a fundamental component that connects the flow structures from the front wing to the rear end of the car through the diffuser, thus significantly influencing the generation of lift and drag. In this work, CFD was used to predict the structure of the vortices and flow pattern underneath a Formula 1 car using a CAD model that mimicked the modern Red Bull Racing Team’s car in recent years. Through comprehensive analysis and simulation, a detailed understanding of the complex flow patterns and aerodynamic phenomena occurring beneath the floor of the car and its vicinity is presented.
Technical Paper

Performance Analysis of Fuel Cells for High Altitude Long Flight Multi-rotor Drones

2024-04-09
2024-01-2177
In recent years, the burgeoning applications of hydrogen fuel cells have ignited a growing trend in their integration within the transportation sector, with a particular focus on their potential use in multi-rotor drones. The heightened mass-based energy density of fuel cells positions them as promising alternatives to current lithium battery-powered drones, especially as the demand for extended flight durations increases. This article undertakes a comprehensive exploration, comparing the performance of lithium batteries against air-cooled fuel cells, specifically within the context of multi-rotor drones with a 3.5kW power requirement. The study reveals that, for the specified power demand, air-cooled fuel cells outperform lithium batteries, establishing them as a more efficient solution.
Technical Paper

Prediction of Aerodynamic Drag in SUVs with Different Specifications by Using Large-Eddy Simulations

2024-04-09
2024-01-2525
Emission regulations are becoming more stringent, as global temperature continues to rise due to the increasing greenhouse gases in the atmosphere. Battery electric vehicles (BEV), which have zero tailpipe emissions, are expected to become widespread to solve this problem. As the powertrain of BEV is more efficient than conventional powered vehicles, the proportion of energy loss during driving due to aerodynamic drag becomes greater. Therefore, reducing aerodynamic drag for improved energy efficiency is important to extend the pure electric range. At Honda, Computational Fluid Dynamics (CFD) and wind tunnel testing are used to optimize vehicle shape and reduce aerodynamic drag. Highly accurate CFD is essential to efficiently guide the development process towards reducing aerodynamic drag. Specifically, the prediction accuracy for the exterior shape, underfloor devices, tires, and wheels must meet development requirements.
Standard

Forced Air or Forced Air/Fluid Equipment for Removal of Frozen Contaminants

2024-03-29
WIP
AIR6284A
This SAE Aerospace Information Report (AIR) covers forced air technology including: reference material, equipment, safety, operation, and methodology. This resource document is intended to provide information and minimum safety guidelines regarding use of forced air or forced air/fluid equipment to remove frozen contaminants. During the effective period of this document, relevant sections herein should be considered and included in all/any relevant SAE documents.
Standard

Procedure for the Analysis and Evaluation of Gaseous Emissions from Aircraft Engines

2024-03-18
ARP1533D
SAE Aerospace Recommended Practice ARP1533 is a procedure for the analysis and evaluation of the measured composition of the exhaust gas from aircraft engines. Measurements of carbon monoxide, carbon dioxide, total hydrocarbon, and the oxides of nitrogen are used to deduce emission indices, fuel-air ratio, combustion efficiency, and exhaust gas thermodynamic properties. The emission indices (EI) are the parameters of critical interest to the engine developers and the atmospheric emissions regulatory agencies because they relate engine performance to environmental impact. While this procedure is intended to guide the analysis and evaluation of the emissions from aircraft gas turbine engines (burning conventional hydrocarbon based liquid fuels), the methodology may be applied to the analysis of the exhaust products of any hydrocarbon/air combustor.
X