Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Steering Column Slip Endurance Test & Rig Development

2018-04-03
2018-01-0125
In the emerging commercial vehicle sector, it is very essential to give a product to customer, which is very reliable and less prone to the failures to make the product successful in the market. In order to make it possible, the product is to be validated to replicate the exact field conditions, where it is going to be operated. Lab testing plays a vital role in reproducing the field conditions in order to reduce the lead time in overall product life cycle development process. This paper deals with the design and fabrication of the steering column slip endurance test rig. This rig is capable of generating wear on the steering column splines coating which predominantly leads to failure of steering column. The data acquired from Proving Ground (PG) was analyzed and block cycles were generated with help of data analyzing tools.
Technical Paper

A Modular High Frequency Stable Orthogonal Road Load Exciter for Validation of Automotive Components

2015-09-29
2015-01-2754
The commercial vehicle industry is evolving faster with the rise in multifarious aspects deciding a company's progress. In the current scenario, vehicle performance and its reliability in the areas of payload, fuel economy, etc. play vital roles in determining its sustenance in the industry, in addition to reducing driver fatigue and improving comfort levels. Test quality and time is the key to assure and affirm, smooth and quick launch of the product into the market. This paper details on the design of Multi-Axis road data simulator which entails realistic loads onto the components for capturing meaningful information on behavior of the product and recreate the field failure modes. The design was conceptualized keeping in mind both cost (for initial installation and running cost) and time for testing without loss in the convergence factor.
Technical Paper

Characterizing Steering Feel and Response with Objective Metrics in Commercial Vehicles

2015-09-29
2015-01-2766
Steering wheel being the most used tactile point in a vehicle, its feel and response is an important factor based on which the vehicle quality is judged. Engineering the right feel and response into the system requires knowledge of the objective parameters that relate to the driver perception. Extensive correlation work has been done in the past pertaining to passenger cars, but the driver requirements for commercial vehicles vary significantly. Often it becomes difficult to match the right parameters to the steering feel experienced by the drivers, since most of the standard ISO weave test units used to describe them are of zero or first order parameters. Analyzing the second order parameters gave a better method to reason driver related feel. Also, each subjective attribute was fragmented into sub-attributes to identify the reason for such a rating resulting in the identification of the major subjective parameters affecting driver ratings.
Technical Paper

An Effective Way To Measure Manual Gearbox Synchroniser Performance

2015-09-29
2015-01-2784
Improved economic growth and infrastructure in India has led to new market trends for commercial vehicles. Customers now expect high levels of comfort from all tactile points in a truck cabin; among them the gearlever knob is frequently used and its reactions greatly influence how a driver perceives gearshift quality (GSQ) and thereby vehicle quality. The importance of the gear shift quality of manual transmissions has increased significantly over the past few years as the refinement of other vehicle systems has increased. In Gearbox, synchroniser is the major component whose performance will affect the peak engagement force to a large extent. Synchroniser mechanism allows gear change to be smooth, noiseless and without vibrations. Since the maximum synchronisation effort vary depending on the rate of the shift actuation, it is difficult to compare synchronisers in different transmissions by force alone.
Technical Paper

Vehicle Handling Sensitivity Analysis through Numerical Simulation in Commercial Vehicles

2015-09-29
2015-01-2736
Vehicle handling is an important attribute that is directly related to vehicle safety. The rapid development of road infrastructure has resulted in a greater focus on safety and stability. Commercial vehicle stability and safety assumes higher significance because of high center of gravity (CG) and heavier loads. A gamut of parameters influence vehicle handling directly and indirectly. However, it is quite difficult to gauge through physical testing, the extent of each parameter's influence on handling. Therefore, this paper examines vehicle handling by way of a sensitivity analysis through numerical simulation. A prototype vehicle is also instrumented and tested to confirm trends and validate the results of the simulation. An Intermediate Commercial Vehicle (ICV) with Gross Vehicle Weight (GVW) of around 13 tonnes is modeled and parameters like wheelbase and tyre stiffness are altered and the effect of these changes on handling parameters (yaw rate, lateral acceleration) is observed.
Technical Paper

Development of an Objective Methodology for Assessment of Commercial Vehicle Gearshift Quality

2014-04-01
2014-01-0182
Rapid growth in the Indian economy has led to new market trends for commercial vehicles. Customers now expect high levels of comfort from all tactile points in a truck cabin; the gear lever knob is frequently used and its reactions greatly influence how a driver perceives Gear Shift Quality (GSQ) and thereby vehicle quality. The subjectivity of human perception is difficult to measure objectively; therefore this paper represents an objective methodology to correlate customer feedback of gearshift reactions. For the attribute evaluation of a set of intermediate commercial vehicles; detailed subjective appraisals were conducted by expert level assessors for GSQ sub-attributes, and a consecutive objective measurement was performed to investigate and substantiate these vehicle assessments.
X