Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

AS9100D Internal Auditor Training

2024-10-28
Internal audits are a requirement of the AS9100, AS 13100 and RM 13005 and are intended to verify the compliance and effectiveness of an organization's quality management system. The methods and techniques for performing internal audits have significantly changed in the aviation, space and defense industries, and internal auditors must be knowledgeable of these requirements and the expectations as identified in the standard.
Training / Education

Applied Vehicle Dynamics

2024-09-23
Take notes! Take the wheel! There is no better place to gain an appreciation for vehicle dynamics than from the driver’s seat. Spend three, intense days with a world-renowned vehicle dynamics engineer and SAE Master Instructor, his team of experienced industry engineers, and the BMW-trained professional driving instructors. They will guide you as you work your way through 12 classroom modules learning how and why vehicles go, stop and turn. Each classroom module is immediately followed by an engaging driving exercise on BMW’s private test track.
Technical Paper

Advanced squeak and rattle noise prediction for vehicle interior development – numerical simulation and experimental validation

2024-06-12
2024-01-2925
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The novel method is based on non-linear theories in the frequency domain. It uses the harmonic balance method in combination with the alternating frequency/time domain method to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked.
Technical Paper

Analysis of the Mechanism by Which Spline Pitch Errors Affect Powertrain Vibration

2024-06-12
2024-01-2910
As environmental concerns have taken the spotlight, electrified powertrains are rapidly being integrated into vehicles across various brands, boosting their market share. With the increasing adoption of electric vehicles, market demands are growing, and competition is intensifying. This trend has led to stricter standards for noise and vibration as well. To meet these requirements, it is necessary to not only address the inherent noise and vibration sources in electric powertrains, primarily from motors and gearboxes, but also to analyze the impact of the spline power transmission structure on system vibration and noise. Especially crucial is the consideration of manufacturing discrepancies, such as pitch errors in splines, which various studies have highlighted as contributors to noise and vibration in electric powertrains. This paper focuses on comparing and analyzing the influence of spline pitch errors on two layout configurations of motor and gearbox spline coupling structures.
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Technical Paper

Static Aeroelastic Analysis and Study of Control Effectiveness of a Typical Reusable Launch Vehicle

2024-06-01
2024-26-0447
Launch vehicles are vulnerable to aeroelastic effects due to their lightweight, flexible, and higher aerodynamic loads. Aeroelasticity research has therefore become an inevitable concern in the development of the Reusable Launch Vehicle (RLV). RLV is the space analogy of an aircraft, a unanimous solution to achieve more affordable access to space. The lightweight control surface of the RLV signifies the relevance of the study on control effectiveness. It is the capability of a control surface such as an elevon or rudder to produce aerodynamic forces and moments to change the launch vehicle's orientation and maneuver it along the intended flight path. The static aeroelastic problem determines the efficiency of control, aircraft trim behaviour, static stability, and maneuvering quality in steady flight conditions. In this study, static aeroelastic analysis was performed on a typical RLV using MSC/NASTRAN inbuilt aerodynamics.
Technical Paper

Numerical Investigation of the Aerodynamic Characteristics of a Missile Geometry at Mach 4

2024-06-01
2024-26-0443
The aim of this paper is to present a numerical analysis of high-speed flows over a missile geometry. The N1G missile has been selected for our study, which is subjected to a high-speed flow at Mach 4 over a range of Angle of attack (AoA) from 0° to 6°. The analysis has been conducted for a 3-dimensional missile model using ANSYS environment. The study contemplates to provide new insights into the missile aerodynamic performance which includes the coefficient of lift (CL) , coefficient of drag (CD) and coefficient of moment (CM) using computational fluid dynamics (CFD). As there is a lack of availability of data for missile geometry, such as free stream conditions and/or the experimental data for a given Mach number, this paper intends to provide a detailed analysis at Mach 4. As the technology is advancing, there is a need for high-speed weapons (missiles) with a good aerodynamic performance, which intern will benefit in reduction of fuel consumption.
Technical Paper

Buckling and Post-Buckling Response of 3D Printed Cylindrical Shell with Circular Cutout Under Axial Compression

2024-06-01
2024-26-0418
Despite being ubiquitous elements in aerospace structures, thin cylindrical shells’ catastrophic buckling response under axial compression has still remained an enigma. The recent advancements in theoretical and numerical studies aided in realising the role of localisation in shell buckling. However, the buckling being instantaneous made it unfeasible for the experimental observations to corroborate the numerical results. This necessitates high-fidelity shell buckling experiments using full-filed measurement techniques. Cut-outs are deliberate and inevitable geometrical imperfections in actual structures that could dictate the buckling response. Additive manufacturing makes it feasible to fabricate shells with tailored imperfections and study various conceivable designs.
Technical Paper

Design and Manufacturing of an Inclinometer Sensing Element for Launch Vehicle Applications

2024-06-01
2024-26-0419
Design and Manufacturing of an Inclinometer sensing element for launch vehicle applications Tony M Shaju, Nirmal Krishna, G Nagamalleswara Rao, Pradeep K Scientist/Engineer, ISRO Inertial Systems Unit, Vattiyoorkavu, Trivandrum, India - 695013 Indian Space Research Organisation (ISRO) uses indigenously developed launch vehicles like PSLV, GSLV, LVM3 and SSLV for placing remote sensing and communication satellites along with spacecrafts for other important scientific applications into earth bound orbits. Navigation systems present in the launch vehicle play a pivotal role in achieving the intended orbits for these spacecrafts. During the assembly of these navigation packages on the launch vehicle, it is required to measure the initial tilt of the navigation sensors for any misalignment corrections, which is given as input to the navigation software. A high precision inclinometer is required to measure these tilts with a resolution of 1 arc-second.
Technical Paper

Structural Loads for Crew Escape System (CES) of Gaganyaan Launch Vehicle During Abort

2024-06-01
2024-26-0453
Abstract : In any human space flight program, safety of the crew is of utmost priority. In case of exigency during atmospheric flight, the crew is safely and quickly rescued from the launch vehicle using Crew escape system. Crew escape system is a crucial part of the Human Space flight vehicle which carries the crew module away from the ascending launch vehicle by firing its rocket motors (Pitch Motor (PM), Low altitude Escape Motor (LEM) and High altitude Escape Motor (HEM)). The structural loads experienced by the crew escape system during the mission abort are severe as the propulsive forces, aerodynamic forces and inertial forces on the vehicle are significantly high. Since the mission abort can occur at anytime during the ascent phase of the launch vehicle, trajectory profiles are generated for abort at every one second interval of ascent flight time considering several combinations of dispersions on various propulsive parameters of abort motors and aero parameters.
Technical Paper

Dynamic Ascent Loads Estimation of Winged Reusable Launch Vehicle: Formulation, Analysis and Post Flight Studies

2024-06-01
2024-26-0452
A structural load estimating methodology was developed for the RLV-TD HEX-01 mission, the maiden winged body technology demonstrator vehicle of ISRO. The technique characterizes atmospheric regime of flight from vehicle loads perspective and ensures adequate structural margin considering atmospheric variations and system level perturbations. Primarily the method evaluates time history of station loads considering effects of vehicle dynamics and structural flexibility. Station loads in the primary structure are determined by superposition of quasi-static aerodynamic loads, dynamic inertia loads, control surface loads and propulsion system loads based on actual physics of the system. Spatial aerodynamic distributions at various Mach numbers along the trajectory have been used in the study. Argumentation in aerodynamic loads due to vehicle flexibility is assessed through the use of spatial aerodynamic distributions.
Technical Paper

Analysis for Effect of Angle of Attack on Coefficient of Lift of Wing Structure

2024-06-01
2024-26-0450
Dimensional optimization has always been a time consuming process, especially for aerodynamic bodies, requiring much tuning of dimensions and testing for each sample. Aerodynamic auxiliaries, especially wings, are design dependent on the primary model attached, as they influence the amount of lift or reduction in drag which is beneficial to the model. In this study CFD analysis is performed to obtain pressure counter of wings. For a wing, the angle of attack is essential in creating proper splits to incoming winds, even under high velocities with larger distances from the separation point. In the case of a group of wings, each wing is then mentioned as a wing element, and each wing is strategically positioned behind the previous wing in terms of its vertical height and its self-angle of attack to create maximum lift. At the same time, its drag remains variable to its shape ultimately maximizing the C L /C D ratio.
X