Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Development of Continuously Variable Discharge Oil Pump

2018-04-03
2018-01-0932
Recently, for the protection of the environment, the regulation of automobile fuel consumption and exhaust gas emission has been strengthened. To improve fuel economy, it is demanded that each engine part contributes to reducing the workload of the engine, even the engine lubrication oil pump. In response to this, a new variable discharge oil pump was developed. It is the world's first internal gear type oil pump that has electronically controlled continuously variable discharge. The work performed by the pump chiefly takes two forms: sliding friction of the rotor and pumping work which moves the oil. First, in developing a variable discharge oil pump, a new tooth profile of the rotor was developed to reduce its sliding friction. As a result, the sliding friction of the rotor was reduced by 34% while maintaining the same theoretical oil discharge rate. Next, a variable discharge mechanism using an internal gear was developed.
Journal Article

Development of Engine Lubrication System with New Internal Gear Fully Variable Discharge Oil Pump

2017-10-08
2017-01-2431
Over the past decades, the automotive industry has made significant efforts to improve engine fuel economy by reducing mechanical friction. Reducing friction under cold conditions is becoming more important in hybrid vehicle (HV) and plug-in hybrid vehicle (PHV) systems due to the lower oil temperatures of these systems, which results in higher friction loss. To help resolve this issue, a new internal gear fully variable discharge oil pump (F-VDOP) was developed. This new oil pump can control the oil pressure freely over a temperature range from -10°C to hot conditions. At 20°C, this pump lowers the minimum main gallery pressure to 100 kPa, thereby achieving a friction reduction effect of 1.4 Nm. The developed oil pump achieves a pressure response time constant of 0.17 seconds when changing the oil pressure from 120 kPa to 200 kPa at a temperature of 20°C and an engine speed of 1,600 rpm.
Technical Paper

Burrless Surface Processing Technology

2016-04-05
2016-01-1074
Although burr removal after machining generates no value, it is a factor to add major processing cost. While our final goal is to remove the deburring process, development of minimizing the variance in the amount and type of burr after machining was promoted this time as our first step. This report presents how we reduced deburring time significantly by minimizing burr as much as possible from optimization of a blade release angle and development of a relevant tool.
Technical Paper

Technology to Balance Discharge Pressure Characteristics with Hydraulic Vibration Control for a Variable Discharge Oil Pump

2016-04-05
2016-01-1348
1 There are two design challenges of the flow path switching valve in a three-stage variable discharge oil pump. The first is to obtain the required discharge pressure characteristics and the other is to prevent hydraulic vibration. Therefore, we established technologies to determine the shape of the valve and the valve housing that resolve these two challenges. The technology to obtain the required discharge pressure characteristics solves equations that are statically true, such as the equations for the equilibrium of forces and hydraulic orifice. The hydraulic vibration control technology derives a differential equation that takes transient behavior, including oil elasticity and inertia, into account first. Then, the derived equations are converted to a transfer function that indicates the valve behavior according to the input of oil pressure changes. And then the stability criterion is applied to judge whether hydraulic vibration occurs or not.
Technical Paper

A Prediction Method of Vehicle Vibration caused by the Drive Torque Fluctuation at Takeoff

2007-08-05
2007-01-3499
Clutch judder phenomenon is known as a vehicle vibration caused by the drive torque fluctuation from the clutch unit at takeoff. In this paper, a novel strategy for improving clutch judder phenomenon caused by the movement/tolerance between mechanical parts comprising the clutch system is introduced. In order to simulate the movements of the clutch system and of the vehicle drivelines precisely, we used numerical analysis software and have achieved high-grade prediction of the clutch torque fluctuation and the vehicle vibration. Using this method, we have developed a high-quality clutch system that enables smoother clutch engagement, and at the same time, development efficiency has been improved.
Technical Paper

Development of High-Strength Carbo-Nitriding Process

2001-10-01
2001-01-3373
One of the problems concerning T/M is conventionally how “Improving the input torque as the engine gets higher power” and “Making product lighter in weight and more compact to improve the fuel consumption” can be realized at the same time. To realize these things at the same time, it is needless to say that the gears must be stronger. For the “pitting fatigue strength” which is quoted as a problem lately, the fatigue mechanism has not been clarified, yet. Therefore, it is now a big problem how to achieve high strength. In the meantime, we tried to develop the production engineering for “finer crystal grains” and “fine-dispersion precipitation of carbo-nitrides,” and succeeded in improving “pitting fatigue strength” remarkably. Such results will be reported in the following sections:
Technical Paper

Development of Power Sliding Door (PSD) System with Push-Pull Cable Driving Method

2000-03-06
2000-01-0080
We have developed a power sliding door (PSD) system driven by a push-pull cable. The door closure and slide are operated by different actuators to limit the force required for a compact, light-weight drive unit. This paper introduces the concept of the PSD system using a push-pull cable drive. Two new technologies to achieve the PSD system are also described. One is the door position control for increasing the push-pull cable reliability. The other is a compact position sensor to accurately detect the sliding door's position.
Technical Paper

Development of Shape Memory Alloy Spring for Oil Flow Control Valve in Clutch System

1996-02-01
960979
Drive train components (transmission, differential gears, etc.) can be made smaller and lighter if the excessive torque exerted on them can be reduced during the quick start of a vehicle. An orifice put in the hydraulic clutch piping path is an effective method. However, increased oil viscosity at low temperatures (0°C or below) makes the “pedal feel” worse. In order to increase the orifice diameter for better “pedal feel”, a shape memory alloy spring, for operation at low temperatures, was developed by adding cobalt to the nickel-titanium alloy. Consequently, a Variable-Orifice valve, using the shape memory alloy spring, is practical.
Technical Paper

Recycling Technology of FRP Molded Parts

1995-02-01
950833
Recycling SMC molded parts has become one of the most important and urgent subjects. This paper discusses a system to recover SMC molded parts and recycle them to original automotive products. “Sandwich structure” in the core layer of which regrinded filler is concentrically involved, is very useful for increasing the volume of involved regrinded filler. This structure provides more weight reduction of recycled parts.
Technical Paper

Vibration Analysis of Control Valve for Active Suspension

1992-02-01
920272
An active suspension system controls a spring constant and an attenuater in real time using a power supply. Generally, the hydraulic pressures are used for transmitting the power. Therefore, a highly reliable and inexpensive control system has been required for a commercial use. This has been achieved by developing a mechanical fluid servo valve which comprises a simple combination of a solenoid valve and a spool valve. The technical problem of the valve vibrations has been solved through the numerical analyses, the fluid flow visualization tests and the vehicle tests.
Technical Paper

Development of Self-Contained Hydraulic Valve Lifter

1983-08-08
831221
The conventional hydraulic valve lifters, which eliminate the valve clearance adjustment, normally use the pressurized engine lubricant for the working fluid. We have developed a quite new type lifter, named “self-contained hydraulic valve lifter”, which possesses the working fluid in itself. Because the new type lifter is independent of the pressurized engine lubricant, it has some advantages, especially that it can be applied to the existing engine using the mechanical valve gear without almost any engine modifications. And we have confirmed that the self-contained hydraulic valve lifter has good characteristics and reliability and have applied it to the mass production engine (i.e. Toyota 1.3L gasoline engine) for the first time in the world. This paper describes the construction, the characteristics and the reliability of this lifter.
X