Refine Your Search

Topic

Author

Search Results

Technical Paper

Numerical Investigation on GDI Spray under High Injection Pressure up to 100 MPa

2020-09-15
2020-01-2108
In recent years, the increase of gasoline fuel injection pressure is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneity with ultra-high injection pressure values up to 100 MPa. The increase of the fuel injection pressure in GDI homogeneous systems meets the demand for increased injector static flow, while simultaneously improves the spray atomization and mixing characteristics with consequent better combustion performance. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution. The aim of this work was to simulate with OpenFOAM the spray morphology of a commercial gasoline injected in a constant volume vessel by a prototypal GDI injector.
Technical Paper

Development of a Dedicated CNG Three-Way Catalyst Model in 1-D Simulation Platforms

2019-09-09
2019-24-0074
A growing interest towards heavy-duty engines powered with NG, dictated by stringent regulations in terms of emissions, has made it essential to study a specific Three-Way Catalyst (TWC). Oxygen storage phenomena characterize the catalytic converter efficiency under real world driving operating conditions and, consequently, during strong dynamics in Air-to-Fuel ratio (AFR). A numerical “quasi-steady” model has been set-up to simulate the chemical process inside the reactor. A dedicated experimental campaign has been performed in order to evaluate the catalyst response to a defined λ variation, thus providing the data necessary for the numerical model validation. In fact, goal of the present research activity was to investigate the effect of very fast composition transitions of the engine exhaust typical of the mentioned driving conditions (including fuel cutoffs etc.) on the catalyst performance and on related emissions.
Technical Paper

Imaging and Vibro-Acoustic Diagnostic Techniques Comparison for a GDI Fuel Injector

2019-09-09
2019-24-0058
This work presents the results of an experimental investigation on a GDI injector, in order to analyze fuel injection process and atomization phenomenon, correlating imaging and vibro-acoustic diagnostic techniques. A single-hole, axially-disposed, 0.200 mm diameter GDI injector was used to spray commercial gasoline in a test chamber at room temperature and atmospheric backpressure. The explored injection pressures were ranged from 5.0 to 20.0 MPa. Cycle-resolved acquisitions of the spray evolution were acquired by a high-speed camera. Simultaneously, the vibro-acoustic response of the injector was evaluated. More in detail, noise data acquired by a microphone sensor were analyzed for characterizing the acoustic emission of the injection, while a spherical loudspeaker was used to excite the spray injection at a proper distance detecting possible fuel spray resonance phenomena.
Technical Paper

CFD Modeling and Validation of the ECN Spray G Experiment under a Wide Range of Operating Conditions

2019-09-09
2019-24-0130
The increasing diffusion of gasoline direct injection (GDI) engines requires a more detailed and reliable description of the phenomena occurring during the fuel injection process. As well known the thermal and fluid-dynamic conditions present in the combustion chamber greatly influence the air-fuel mixture process deriving from GDI injectors. GDI fuel sprays typically evolve in wide range of ambient pressure and temperatures depending on the engine load. In some particular injection conditions, when in-cylinder pressure is relatively low, flash evaporation might occur significantly affecting the fuel-air mixing process. In some other particular injection conditions spray impingement on the piston wall might occur, causing high unburned hydrocarbons and soot emissions, so currently representing one of the main drawbacks of GDI engines.
Technical Paper

Impact of Cooled EGR on Performance and Emissions of a Turbocharged Spark-Ignition Engine under Low-Full Load Conditions

2019-09-09
2019-24-0021
The stringent worldwide exhaust emission legislations for CO2 and pollutants require significant efforts to increase both the combustion efficiency and the emission quality of internal combustion engines. With this aim, several solutions are continuously developed to improve the combustion efficiency of spark ignition engines. Among the various solutions, EGR represents a well-established technology to improve the gasoline engine performance and the nitrogen-oxides emissions. This work presents the results of an experimental investigation on the effects of the EGR technique on combustion evolution, knock tendency, performance and emissions of a small-size turbocharged PFI SI engine, equipped with an external cooled EGR system. Measurements are carried out at different engine speeds, on a wide range of loads and EGR levels. The standard engine calibration is applied at the reference test conditions.
Technical Paper

Assessment of Engine Control Parameters Effect to Minimize GHG Emissions in a Dual Fuel NG/Diesel Light Duty Engine

2018-04-03
2018-01-0266
The interest in Natural Gas (NG) as alternative fuel for transportation is constantly growing, mostly due to its large availability and lower environmental impact with respect to gasoline or diesel fuel. In this scenario, the application of the Dual Fuel (DF) Diesel- Natural Gas (NG) combustion concept to light duty engines can represent an important route to increment the diffusion of natural gas use. Many studies have proven the benefits of DF with respect to conventional diesel combustion in terms of CO2, NOx, PM and PN emissions, with the main drawback of high unburned hydrocarbon, mainly at low/partial engine loads. This last aspect still prevents the application of DF mode to small displacement engines. In the present work, a 2.0 L Euro 5 compliant diesel engine, equipped with an advanced electronic closed-loop combustion control (CLCC) system, has been set up to operate in DF mode and tested on a dyno test bench.
Technical Paper

ECN Spray G Injector: Assessment of Numerical Modeling Accuracy

2018-04-03
2018-01-0306
Gasoline Direct Injection (GDI) is a leading technology for Spark Ignition (SI) engines: control of the injection process is a key to design the engine properly. The aim of this paper is a numerical investigation of the gasoline injection and the resulting development of plumes from an 8-hole Spray G injector into a quiescent chamber. A LES approach has been used to represent with high accuracy the mixing process between the injected fuel and the surrounding mixture. A Lagrangian approach is employed to model the liquid spray. The fuel, considered as a surrogate of gasoline, is the iso-octane which is injected into the high-pressure vessel filled with nitrogen. The numerical results have been compared against experimental data realized in the optical chamber. To reveal the geometry of plumes two different imaging techniques have been used in a quasi-simultaneous mode: Mie-scattering for the liquid phase and schlieren for the gaseous one.
Technical Paper

Iso-Octane Spray from a GDI Multi-Hole Injector under Non- and Flash Boiling Conditions

2017-10-08
2017-01-2319
GDI injection systems have become dominant in passenger cars due to their flexibility in managing and advantages in the fuel economy. With the increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the fuel spray behavior has become essential. Different engine loads produce in a variety of fuel supplying conditions that affect the air/fuel mixture preparation and influence the efficiency and pollutant production. The flash boiling is a particular state that occurs for peculiar thermodynamic conditions of the engine. It could strongly influence the mixture in sub-atmospheric environments with detrimental effects on emissions. In order to obtain an in-depth understanding of the flash boiling phenomena, it is necessary to study the parameters influencing the mixture formation and their appearance in diverse engine conditions.
Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Technical Paper

How Much Regeneration Events Influence Particle Emissions of DPF-Equipped Vehicles?

2017-09-04
2017-24-0144
Diesel particulate filter (DPF) is the most effective emission control device for reducing particle emissions (both mass, PM, and number, PN) from diesel engines, however many studies reported elevated emissions of nanoparticles (<50 nm) during its regeneration. In this paper the results of an extensive literature survey is presented. During DPF active regeneration, most of the literature studies showed an increase in the number of the emitted nanoparticles of about 2-3 orders of magnitude compared to the normal operating conditions. Many factors could influence their amount, size distribution, chemical-physical nature (volatiles, semi-volatiles, solid) and the duration of the regenerative event: i.e. DPF load and thermodynamic conditions, lube and fuel sulfur content, engine operative conditions, PN sampling and measurement methodologies.
Technical Paper

Experimental and Numerical Characterization of Diesel Injection in Single-Cylinder Research Engine with Rate Shaping Strategy

2017-09-04
2017-24-0113
The management of multiple injections in compression ignition (CI) engines is one of the most common ways to increase engine performance by avoiding hardware modifications and after-treatment systems. Great attention is given to the profile of the injection rate since it controls the fuel delivery in the cylinder. The Injection Rate Shaping (IRS) is a technique that aims to manage the quantity of injected fuel during the injection process via a proper definition of the injection timing (injection duration and dwell time). In particular, it consists in closer and centered injection events and in a split main injection with a very small dwell time. From the experimental point of view, the performance of an IRS strategy has been studied in an optical CI engine. In particular, liquid and vapor phases of the injected fuel have been acquired via visible and infrared imaging, respectively. Injection parameters, like penetration and cone angle have been determined and analyzed.
Technical Paper

Parametric Analysis of the Effect of Pilot Quantity, Combustion Phasing and EGR on Efficiencies of a Gasoline PPC Light-Duty Engine

2017-09-04
2017-24-0084
In this paper, a parametric analysis on the main engine calibration parameters applied on gasoline Partially Premixed Combustion (PPC) is performed. Theoretically, the PPC concept permits to improve both the engine efficiencies and the NOx-soot trade-off simultaneously compared to the conventional diesel combustion. This work is based on the design of experiments (DoE), statistical approach, and investigates on the engine calibration parameters that might affect the efficiencies and the emissions of a gasoline PPC. The full factorial DoE analysis based on three levels and three factors (33 factorial design) is performed at three engine operating conditions of the Worldwide harmonized Light vehicles Test Cycles (WLTC). The pilot quantity (Qpil), the crank angle position when 50% of the total heat is released (CA50), and the exhaust gas recirculation (EGR) factors are considered. The goal is to identify an engine calibration with high efficiency and low emissions.
Journal Article

Real Time Prediction of Particle Sizing at the Exhaust of a Diesel Engine by Using a Neural Network Model

2017-09-04
2017-24-0051
In order to meet the increasingly strict emission regulations, several solutions for NOx and PM emissions reduction have been studied. Exhaust gas recirculation (EGR) technology has become one of the more used methods to accomplish the NOx emissions reduction. However, actual control strategies do not consider, in the definition of optimal EGR, its effect on particle size and density. These latter have a great importance both for the optimal functioning of after-treatment systems, but also for the adverse effects that small particles have on human health. Epidemiological studies, in fact, highlighted that the toxicity of particulate particles increases as the particle size decreases. The aim of this paper is to present a Neural Network model able to provide real time information about the characteristics of exhaust particles emitted by a Diesel engine.
Technical Paper

Chaos Theory Approach as Advanced Technique for GDI Spray Analysis

2017-03-28
2017-01-0839
The paper reports an innovative method of analysis based on an advanced statistical techniques applied to images captured by a high-speed camera that allows highlighting phenomena and anomalies hardly detectable by conventional optical diagnostic techniques. The images, previously elaborated by neural network tools in order for clearly identifying the contours, have been analyzed in their time evolution as pseudo-chaotic variables that may have internal periodic components. In addition to the Fourier analysis, tools as Lyapunov and Hurst exponents and average Kω permitted to detect the chaos level of the signals. The use of this technique has permitted to distinguish periodic oscillations from chaotic variations and to detect those parameters that actually determine the spray behavior.
Technical Paper

Fuzzy Logic Approach to GDI Spray Characterization

2016-04-05
2016-01-0874
Advanced numerical techniques, such as fuzzy logic and neural networks have been applied in this work to digital images acquired on a mono-component fuel spray (iso-octane), in order to define, in a stochastic way, the gas-liquid interface evolution. The image is a numerical matrix and so it is possible to characterize geometrical parameters and the time evolution of the jet by using deterministic, statistical stochastic and other several kinds of approach. The algorithm used works with the fuzzy logic concept to binarize the shades gray of the pixel, depending them, by using the schlieren technique, on the gas density. Starting from a primary fixed threshold, the applied technique, can select the ‘gas’ pixel from the ‘liquid’ pixel and so it is possible define the first most probably boundary lines of the spray.
Technical Paper

Plasma Assisted Ignition Effects on a DISI Engine Fueled with Gasoline and Butanol under Lean Conditions and with EGR

2016-04-05
2016-01-0710
Considering the generalized diversification of the energy mix, the use of alcohols as gasoline replacement is proposed as a viable option. Also, alternative control strategies for spark ignition engines (SI) such as lean operation and exhaust gas recirculation (EGR) are used on an ever wider scale for improving fuel economy and reducing the environmental impact of automotive engines. In order to increase the stability of these operating points, alternative ignition systems are currently investigated. Within this context, the present work deals about the use of plasma assisted ignition (PAI) in a direct injection (DI) SI engine under lean conditions and cooled EGR, with gasoline and n-butanol fueling. The PAI system was tested in an optically accessible single-cylinder DISI engine equipped with the head of a commercial turbocharged power unit with similar geometrical specifications (bore, stroke, compression ratio).
Technical Paper

Performance, Gaseous and Particle Emissions of a Small Compression Ignition Engine Operating in Diesel/Methane Dual Fuel Mode

2016-04-05
2016-01-0771
This paper deals with the combustion behavior and exhaust emissions of a small compression ignition engine modified to operate in diesel/methane dual fuel mode. The engine is a three-cylinder, 1028 cm3 of displacement, equipped with a common rail injection system. The engine is provided with the production diesel oxidation catalyst. Intake manifold was modified in order to set up a gas injector managed by an external control unit. Experiments were carried out at different engine speeds and loads. For each engine operating condition, the majority of the total load was supplied by methane while a small percentage of the load was realized using diesel fuel; the latter was necessary to ignite the premixed charge of gaseous fuel. Thermodynamical analysis of the combustion phase was performed by in-cylinder pressure signal. Gas emissions and particulate matter were measured at the exhaust by commercial instruments.
Technical Paper

Experimental and Numerical Investigation of the Effect of Split Injections on the Performance of a GDI Engine Under Lean Operation

2015-09-06
2015-24-2413
Gasoline direct injection (GDI) allows flexible operation of spark ignition engines for reduced fuel consumption and low pollutants emissions. The choice of the best combination of the different parameters that affect the energy conversion process and the environmental impact of a given engine may either resort to experimental characterizations or to computational fluid dynamics (CFD). Under this perspective, present work is aimed at discussing the assessment of a CFD-optimization (CFD-O) procedure for the highest performance of a GDI engine operated lean under both single and double injection strategies realized during compression. An experimental characterization of a 4-stroke 4-cylinder optically accessible engine, working stratified lean under single injection, is first carried out to collect a set of data necessary for the validation of a properly developed 3D engine model.
Technical Paper

Use of Ionization Current to Estimate CO Rate in a Small 2-Stroke SI Engine

2015-09-06
2015-24-2525
This paper presents an experimental study on a 2-stroke SI engine, used on small portable tools for gardening or agriculture, aimed to identify possible correlations between parameters related to ionization current and air/fuel mixture richness, considering different fuels and spark plug wear. This, to realize a simple system to control the engine parameters and adapt them to engine aging and fuel type changing. The engine was fed with commercial gasoline, low octane number gasoline, alkylate gasoline and a blend of 80% gasoline and 20% ethanol. In all tests carried out with varying engine speed and spark advance the ionization signal was characterized by a single peak, resulting in the impossibility of distinguishing chemical and thermal ionization. All data collected were analyzed looking for correlations between all the available data of CO emissions and several characteristic parameters obtained from the ionization signal.
Technical Paper

Hydrocracked Fossil Oil and Hydrotreated Vegetable Oil (HVO) Effects on Combustion and Emissions Performance of “Torque-Controlled” Diesel Engines

2015-09-06
2015-24-2497
The present paper describes the results of a research activity aimed at studying the potential offered by the use of Hydrocracked fossil oil (HCK) and Hydrotreated Vegetable Oil (HVO) blends as premium fuels for next generation diesel engines. Five fuels have been tested in a light duty four cylinder diesel engine, Euro 5 version, equipped with closed loop control of the combustion. The set of fuels comprises four experimental fuels specifically formulated by blending high cetane HVO and HCK streams and oneEN590-compliant commercial diesel fuel representative of the current market fuel quality. A well consolidated procedure has been carried out to estimate, for the tested fuels, the New European Driving Cycle (NEDC) vehicle performance by means of the specific emissions at steady-state engine operating points.
X