Refine Your Search

Topic

Author

Search Results

Journal Article

Coupled-SEA Application to Full Vehicle with Numerical Turbulent Model Excitation for Wind Noise Improvement

2021-08-31
2021-01-1046
Wind noise is becoming a higher priority in the automotive industry. Several past studies investigated whether Statistical Energy Analysis (SEA) can be utilized to predict wind noise. Because wind noise analysis requires both radiation and transmission modeling in a wide frequency band, turbulent-structure-acoustic-coupled-SEA is being used. Past research investigated coupled-SEA’s benefit, but the model is usually simplified to enable easier consideration on the input side. However, the vehicle is composed of multiple interior parts and possible interior countermeasure consideration is needed. To enable this, at first, a more detailed coupled-SEA model is built from the acoustic-SEA model which has a larger number of degrees of freedom for the interior side. Then, the model is modified to account for sound radiation effects induced by turbulent and acoustic pressure.
Technical Paper

Determine 24 GHz and 77 GHz Radar Characteristics of Surrogate Grass

2019-04-02
2019-01-1012
Road Departure Mitigation System (RDMS) is a new feature in vehicle active safety systems. It may not rely only on the lane marking for road edge detection, but other roadside objects This paper discusses the radar aspect of the RDMS testing on roads with grass road edges. Since the grass color may be different at different test sites and in different seasons, testing of RDMS with real grass road edge has the repeatability issue over time and locations. A solution is to develop surrogate grass that has the same characteristics of the representative real grass. Radar can be used in RDMS to identify road edges. The surrogate grass should be similar to representative real grass in color, LIDAR characteristics, and Radar characteristics. This paper provides the 24 GHz and 77 GHz radar characteristic specifications of surrogate grass.
Technical Paper

Development of an Emergency Stop Assist System

2019-04-02
2019-01-1025
Social concern with traffic accidents caused by driver’s medical emergencies has been growing for the last several years. In Japan, the government issued technical guidelines in June 2016 to promote systems that deal with such accidents. Based on those guidelines, the Emergency Stop Assist system was manufactured in October 2017 to help reduce such accidents. This article first describes its purpose and core design, then presents an overview of the system, and finally discusses its effectiveness.
Journal Article

Long-Term Evolution of Straight Crossing Path Crash Occurrence in the U.S. Fleet: The Potential of Intersection Active Safety Systems

2019-04-02
2019-01-1023
Intersection collisions currently account for approximately one-fifth of all crashes and one-sixth of all fatal crashes in the United States. One promising method of mitigating these crashes and fatalities is to develop and install Intersection Advanced Driver Assistance Systems (I-ADAS) on vehicles. When an intersection crash is imminent, the I-ADAS system can either warn the driver or apply automated braking. The potential safety benefit of I-ADAS has been previously examined based on real-world cases drawn from the National Motor Vehicle Crash Causation Survey (NMVCCS). However, these studies made the idealized assumption of full installation in all vehicles of a future fleet. The objective of this work was to predict the reduction in Straight Crossing Path (SCP) crashes due to I-ADAS systems in the United States over time. The proportion of new vehicles with I-ADAS was modeled using Highway Loss Data Institute (HLDI) fleet penetration predictions.
Journal Article

Analysis of Driver Kinematics and Lower Thoracic Spine Injury in World Endurance Championship Race Cars during Frontal Impacts

2017-03-28
2017-01-1432
This study used finite element (FE) simulations to analyze the injury mechanisms of driver spine fracture during frontal crashes in the World Endurance Championship (WEC) series and possible countermeasures are suggested to help reduce spine fracture risk. This FE model incorporated the Total Human Model for Safety (THUMS) scaled to a driver, a model of the detailed racecar cockpit and a model of the seat/restraint systems. A frontal impact deceleration pulse was applied to the cockpit model. In the simulation, the driver chest moved forward under the shoulder belt and the pelvis was restrained by the crotch belt and the leg hump. The simulation predicted spine fracture at T11 and T12. It was found that a combination of axial compression force and bending moment at the spine caused the fractures. The axial compression force and bending moment were generated by the shoulder belt down force as the driver’s chest moved forward.
Journal Article

Thermal Flow Analysis of Hybrid Transaxle Surface Using Newly-Developed Heat Flux Measurement Method

2015-04-14
2015-01-1652
This research developed a new measurement technology for thermal analysis of the heat radiation from a hybrid transaxle case surface to the air and improved the heat radiation performance. This heat flux measurement technology provides the method to measure heat flux without wiring of sensors. The method does not have effects of wiring on the temperature field and the flow field unlike the conventional methods. Therefore, multipoint measurement of heat flux on the case surface was enabled, and the distribution of heat flux was quantified. To measure heat flux, thermal resistances made of plastic plates were attached to the case surface and the infrared thermography was used for the temperature measurement. The preliminary examination was performed to confirm the accuracy of the thermal evaluation through heat flux measurement. The oil in the transaxle was heated and the amount of heat radiation from the case surface was measured.
Technical Paper

Development of High-Pressure Hydrogen Storage System for the Toyota “Mirai”

2015-04-14
2015-01-1169
The new Toyota FCV “Mirai” has reduced the weight, size, and cost of the high-pressure hydrogen storage system while improving fueling performance. The four 70 MPa tanks used on the 2008 Toyota FCHV-adv were reduced to two new larger diameter tanks. The laminated structure of the tanks was optimized to reduce weight, and a high-strength low-cost carbon fiber material was newly developed and adopted. The size of the high-pressure valve was reduced by improving its structure and a high-pressure sensor from a conventional vehicle was modified for use in a high-pressure hydrogen atmosphere. These innovations helped to improve the weight of the whole storage system by approximately 15% in comparison with Toyota FCHV-adv, while reducing the number of component parts by half and substantially reducing cost. The time required to fuel the FCV was greatly reduced by chilling the filling gas temperature at the hydrogen filling station to −40°C (as per SAE J2601).
Technical Paper

Simulator Motion Sickness Evaluation Based on Eye Mark Recording during Vestibulo-Ocular Reflex

2014-04-01
2014-01-0441
The driving simulator (DS) developed by Toyota Motor Corporation simulates acceleration using translational (XY direction) and tilting motions. However, the driver of the DS may perceive a feeling of rotation generated by the tilting motion, which is not generated in an actual vehicle. If the driver perceives rotation, a vestibulo-ocular reflex (VOR) is generated that results in an unnecessary correction in the driver's gaze. This generates a conflict between the vestibular and visual sensations of the driver and causes motion sickness. Although such motion sickness can be alleviated by reducing the tilting motion of the DS, this has the effect of increasing the amount of XY motion, which has a limited range. Therefore, it is desirable to limit the reduction in the tilting motion of the DS to the specific timing and amount required to alleviate motion sickness. However, the timing and extent of the VOR has yet to be accurately identified.
Technical Paper

Benefit Estimation Method for Lane Departure Warning Systems in the American Traffic Environment

2014-04-01
2014-01-0172
We develop a simulation tool which reproduces lane departure crashes for the purpose of estimating potential benefits of Lane Departure Warning (LDW) systems in the American traffic environment. Tools that allow a fast evaluation of active safety systems are useful to make better systems, more effective in the real world; however accuracy of the results is always an issue. Our proposed approach is based on developing a simulation tool that reproduces lane departure crashes, then adding the effect of the LDW to compare the cases with and without the safety system, and finally comparing the results of different settings of the safety system. Here, the accurate reproduction of the relevant crashes determines the reliability of the results. In this paper, we present the reproduction of the lane departure crashes occurred in American roads in one year, by using data distributions obtained from retrospective crash databases.
Journal Article

Development of HEV Engine Start-Shock Prediction Technique Combining Motor Generator System Control and Multi-Body Dynamics (MBD) Models

2013-05-13
2013-01-2007
Previous reports have already described the details of engine start-shock and the mechanism of vibration mechanism in a stationary vehicle. This vibration can be reduced by optimized engine and motor generator vibration-reduction controls. A prediction method using a full-vehicle MBD model has also been developed and applied in actual vehicle development. This paper describes the outline of a new method for the hybrid system of mechanical power split device with two motors that predicts engine start-shock when the vehicle is accelerating while the engine is stopped. It also describes the results of mechanism analysis and component contribution analysis. This method targets engine start-shock caused by driving torque demand during acceleration after vehicle take-off. The hybrid control system is modeled by MATLAB/Simulink. A power management and motor generator control program used in actual vehicles is installed into the main part of the control system model.
Technical Paper

Development of New AMT Shift Speed Control System for Lexus LFA

2011-10-06
2011-28-0103
The development of the Lexus LFA focused on the pursuit of a passionate driving experience suitable for a super sports car. The shift speed control system in the LFA is an automated manual transmission (AMT) that uses an electrohydraulic actuator. The excellent shifting performance of the AMT was achieved by developing control technology that performs smooth, quick, and highly responsive shifting in accordance with the driving conditions. This was the result of repeated evaluations in both normal driving and on circuits featuring many acceleration, deceleration, and high-speed driving sectors. This paper describes the AMT shift speed control system and technology.
Technical Paper

Progress and Challenges in Toyota's Fuel Cell Vehicle Development

2011-10-06
2011-28-0061
This paper describes an outline of the Toyota FCHV-adv, a fuel cell vehicle with a practical cruising range of more than 500 km. The cold startability of the FCHV-adv was improved by modifying the FC stack and control system. As a result, the FCHV-adv is capable of starting at a temperature of -30°C. In the future, Toyota intends to improve durability and reduce costs and is continuing to cooperate with governments and energy businesses to establish infrastructure and make the necessary modifications to laws and regulations.
Technical Paper

Modeling of Diesel Engine Components for Model-Based Control (Second Report): Prediction of Combustion with High Speed Calculation Diesel Combustion Model

2011-08-30
2011-01-2044
This paper describes the development of a High Speed Calculation Diesel Combustion Model that predicts combustion-related behaviors of diesel engines from passenger cars. Its output is dependent on the engine's operating parameters and on input from on-board pressure and temperature sensors. The model was found to be capable of predicting the engine's in-cylinder pressure, rate of heat release, and NOx emissions with a high degree of accuracy under a wide range of operating conditions at a reasonable computational cost. The construction of this model represents an important preliminary step towards the development of an integrated Model Based Control system for controlling combustion in diesel engines used in passenger cars.
Technical Paper

Research into All Solid Secondary Lithium Battery

2011-05-17
2011-39-7234
It may be possible to simplify the structure and control systems of a lithium-ion battery by replacing the conventional liquid electrolyte with a solid electrolyte, resulting in higher energy density. However, power performance is a development issue of batteries using a solid electrolyte. To increase battery power performance, in addition to lithium ionic conductivity within the bulk of the electrolyte, it is also necessary to boost the lithium ionic conductivity at the interface between the electrode active material and the electrolyte, and to boost electron and lithium ionic conductivity within the cathode and anode active material. This research studied the mechanism of resistance reduction by electrode surface modification. Subsequently, this research attempted to improve electron conductivity by simultaneously introducing oxygen vacancies and carrying out nitrogen substitution in the crystalline structure of the Li4Ti5O12 anode active material.
Technical Paper

Development of Fuel Cell Hybrid Vehicle in TOYOTA

2011-05-17
2011-39-7238
The outline of the TOYOTA FCHV-adv is described in this paper. The TOYOTA FCHVadv achieved an approximately 25 percent improvement in vehicle fuel efficiency and about 1.9 times the amount of usable hydrogen in comparison with the previous model. These improvements have enabled almost 2.5 times longer practical cruising range, more than 500 km. The freeze start capabilities of the FCHV-adv were improved by modifying the FC stack and control system. As a result, the FCHV-adv has been capable of starting at a temperature of -30°C. In the future, TOYOTA intends to improve durability and reduce costs.
Technical Paper

The Humidity Control System Applied to Reduce Ventilation Heat Loss of HVAC Systems

2011-04-12
2011-01-0134
Vehicles have been more required to save energy against the background of the tendency of ecology. As the result of improving efficiency of internal combustion engines and adoption of electric power train, heat loss from engine coolant, which is used to heat the cabin, decreases and consequently additional energy may be consumed to maintain thermal comfort in the passenger compartment in winter. This paper is concerned with the humidity control system that realizes reduction of ventilation heat loss by controlling recirculation rate of the HVAC system by using highly accurate humidity sensor to evaluate risk of fogging on the windshield. As the results of the control, fuel consumption of hybrid vehicles decreases and maximum range of electric vehicles increases.
Technical Paper

Development of a Vehicle Model for FCHV Control and Functional Specification Development within a Software-in-the-Loop Simulation Environment

2010-04-12
2010-01-0939
Model-Based Development (MBD) has become an automotive industry standard process in vehicle control systems development due to the potential to reduce development time and improve engineering quality. This has become even more important as control systems are becoming increasingly complex while development cycle timelines shorten. Toyota utilized Hardware-in-the-Loop Simulations (HILS) techniques when developing the latest Fuel Cell Hybrid Vehicle, FCHV-adv. These MBD techniques contributed to the overall development process, but applications were limited to verifying control specifications. It was recognized that if MBD could be utilized beyond its current role in the control system design process to include functional specification validation, specification quality could be improved while decreasing development time and cost.
Technical Paper

Development of Water Content Control System for Fuel Cell Hybrid Vehicles Based on AC Impedance

2010-04-12
2010-01-1088
Toyota has been developing fuel cell hybrid vehicles (FCHV) since 1992 and is currently working to resolve issues that remain for commercialization. This research focused on one of the main issues for fuel cells (FC), namely water content of the electrolyte membrane, to develop a FC water content control system based on AC impedance measurement. Adopting this control system in the FCHV resolved the issue of reduced efficiency caused by FC membrane dry-out, and makes it possible to start up the FCHV in temperatures down to -30°C by performing appropriate water content control for freezing environments.
Technical Paper

Safety Impact Methodology (SIM) for Effectiveness Estimation of a Pre-Collision System (PCS) by Utilizing Driving Simulator Test and EDR Data Analysis

2010-04-12
2010-01-1003
Pre-collision system (PCS) that basically consists of warning buzzer, brake-assist and automatic brake functions is designed to help mitigate injury occurring in frontal impacts where preceding vehicles are impacted from the rear. Since the benefit of each function is influenced by drivers' reaction before collision, it is difficult to estimate quantitative effectiveness for improvement. This paper proposes an approach to establish a Safety Impact Methodology (SIM) for the effectiveness estimation of a PCS by utilizing driving simulator (DS) test results and Event Data Recorder (EDR) data. The estimation procedure consists of four steps. Firstly, the PCS functions were modeled as linear transfer functions with gain, delay, etc. Test vehicle's properties were measured and modeled as an example. Secondly, the transfer functions were applied to each DS test result, and the speed reduction from travel speed to impact speed was calculated by the model assuming that PCS was installed.
Technical Paper

Development of New Sports Shift Control System for Toyota's Automatic Transmission

2008-04-14
2008-01-0535
Toyota has developed a new sports shift control system introduced in the world's first eight-speed automatic transmission (AA80E), which is implemented in the “LS 460” and has been adopted in the “IS F” (upcoming 2008 model). This enables the IS F to be a vehicle that also permits the enjoyment of driving on circuits as well as achieving that “fun-to-drive” image. In sports driving, as achieved by the conventional torque converter-type automatic transmissions, shift response performance for shift operation and linearity performance for accelerator operations were challenges to tackle. On the contrary, the newly developed sports shift control system has resolved these challenges and enables the IS F to be capable of responding to a driver's intention quickly and accurately, letting the driver truly experience satisfaction.
X