Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

An Improved AEB Control System Based on Risk Factors with Consideration of Vehicle Stability

2024-04-09
2024-01-2331
Intelligent vehicle-to-everything connectivity is an important development trend in the automotive industry. Among various active safety systems, Autonomous Emergency Braking (AEB) has garnered widespread attention due to its outstanding performance in reducing traffic accidents. AEB effectively avoids or mitigates vehicle collisions through automatic braking, making it a crucial technology in autonomous driving. However, the majority of current AEB safety models exhibit limitations in braking modes and fail to fully consider the overall vehicle stability during braking. To address these issues, this paper proposes an improved AEB control system based on a risk factor (AERF). The upper-level controller introduces the risk factor (RF) and proposes a multi-stage warning/braking control strategy based on preceding vehicle dynamic characteristics, while also calculating the desired acceleration.
Technical Paper

Experimental Comparison of Spark and Jet Ignition Engine Operation with Ammonia/Hydrogen Co-Fuelling

2024-04-09
2024-01-2099
Ammonia (NH3) is emerging as a potential fuel for longer range decarbonised heavy transport, predominantly due to favourable characteristics as an effective hydrogen carrier. This is despite generally unfavourable combustion and toxicity attributes, restricting end use to applications where robust health and safety protocols can always be upheld. In the currently reported work, a spark ignited thermodynamic single cylinder research engine was upgraded to include gaseous ammonia and hydrogen port injection fueling, with the aim of understanding maximum viable ammonia substitution ratios across the speed-load operating map. The work was conducted under stoichiometric conditions with the spark timing re-optimised for maximum brake torque at all stable logged sites. The experiments included industry standard measurements of combustion, performance and engine-out emissions.
Technical Paper

Innovative Zero-Emissions Braking System: Performance Analysis Through a Transient Braking Model

2024-04-09
2024-01-2553
This paper presents the analysis of an innovative braking system as an alternative and environmentally friendly solution to traditional automotive friction brakes. The idea arose from the need to eliminate emissions from the braking system of an electric vehicle: traditional brakes, in fact, produce dust emissions due to the wear of the pads. The innovative solution, called Zero-Emissions Driving System (ZEDS), is a system composed of an electric motor (in-wheel motor) and an innovative brake. The latter has a geometry such that it houses MagnetoRheological Fluid (MRF) inside it, which can change its viscous properties according to the magnetic field passing through it. It is thus an electro-actuated brake, capable of generating a magnetic field passing through the fluid and developing braking torque. A performance analysis obtained by a simulation model built on Matlab Simulink is proposed.
Technical Paper

Experimental Analysis of the Influence of Damper Degradation by Loss of Oil on the Straight Braking Performance of Passenger Cars with ABS

2024-03-19
2024-01-5036
The aim of this study is to determine if the degradation of one or more dampers of a passenger car with ABS leads to a statistically significant reduction of vehicle safety. Therefore, a compact and a mid-size car are tested on a flat test track and on an uneven test track by straight braking maneuvers at different levels of damper degradation. Both test tracks are scanned using a 3D laser scanner. For every level of damper degradation (on each test track) a new set of tires is used, a preconditioning routine is applied and 30 successful measurements are conducted to allow using statistical methods to evaluate the results. The results show that any level of damper degradation with each type of car and test track leads to a significant increase in braking distance and, therefore, to a significant reduction of vehicle safety. The braking distance extension varies heavily with the level of damper degradation and the road properties.
Technical Paper

Numerical Modelling and Simulation of Anti-lock Braking System for Two-wheeler Electric bike using Scilab Xcos

2024-02-23
2023-01-5139
Disc brakes are the most popular type of brakes used in the two-wheeler segment and are easily available in the market. The improper brakes result in serious problems in vehicles. The main idea of this paper is to design a braking system for a two-wheeler application. The paper discusses the design, analysis, and simulation of disc brakes. The disc is first selected using the standard brake disc calculation. To verify the selection of disk, torque at wheel and torque at the disc are compared. Thermomechanical (Transient) analysis is done on ANSYS 2021 to check for the effect of braking force applied by the disc on the rotor disc. The mathematical model of the ABS model is done on Scilab Xcos. The main aim of studying the system using a mathematical model is to verify if the selected disc brakes are safe enough to be installed on a two-wheeler. The mathematical model also has stopping distance and the stopping time as the output which validates the selection of the disc.
Technical Paper

Design, Modeling and Analysis of Customized Brake Caliper for SAE BAJA Vehicle

2024-02-23
2023-01-5106
All-terrain vehicles are gaining more popularity due to their off-roading nature. In this ATV one of the most important components which gives us a safe ride and control is the braking system. This study presents a detailed view of the design, modelling and analysis of brake caliper using Solidworks 2022 and Altair Hyperworks software for an all-terrain vehicle. A single piston floating caliper which is designed to fulfil conditions such as compact size to fit into wheel assembly, to provide adequate strength and great efficiency of about 80% during off-road conditions. This caliper is mainly designed to withstand a braking torque of 315645 Nm. The main aim of designing the caliper is to fit inside the wheel assembly of the ATV so that the interaction between the caliper is not with any other components. Furthermore, considerations are accounted as machinability are integrated into the design process, ensuring that the proposed brake caliper systems are performing well.
Technical Paper

Regulatory Trends for Enhancement of Road Safety

2024-01-16
2024-26-0165
India is one of the largest markets for the automobile sector and considering the trends of road fatalities and injuries related to road accidents, it is pertinent to continuously review the safety regulations and introduce standards which promise enhanced safety. With this objective, various Advanced Driver Assistance Systems (ADAS) regulations are proposed to be introduced in the Indian market. ADAS such as, Anti-lock Braking Systems, Advanced Emergency Braking systems, Lane Departure Warning Systems, Auto Lane Correction Systems, Driver Drowsiness Monitoring Systems, etc., assist the driver during driving. They tend to reduce road accidents and related fatalities by their advanced and artificial intelligent fed programs. This paper will share an insight on the past, recent trends and the upcoming developments in the regulation domain with respect to safety.
Technical Paper

Calibration of an Inertial Measurement Unit and Its Impact on Antilock Braking System Performance

2024-01-16
2024-26-0014
An Inertial Measurement Unit (IMU) provides vehicle acceleration that can be used in Active Vehicle Safety Systems (AVSSs). However, the signal output from an IMU is affected by changes in its position in the vehicle and alignment, which may lead to degradation in AVSS performance. Investigators have employed physics and data-based models for countering the impact of sensor misalignment, and the effects of gravity on acceleration measurements. While physics-based methods utilize parameters varying dynamically with vehicle motion, data-based methods require an extensive number of parameters making them computationally expensive. These factors make the above-explored methods practically challenging to implement on production vehicles. This study considers a 6-axis IMU and evaluates its impact on Antilock Braking System (ABS) performance by considering the IMU signal obtained with different mounting orientations, and positions on a Heavy Commercial Road Vehicle (HCRV).
Technical Paper

Revolutionizing Electric Mobility: The Latest Breakthroughs in Tyre Design

2023-11-10
2023-28-0056
The increasing demand for electric mobility has brought about significant advancements in tyre design. This paper covers the latest developments in tyre design that cater specifically to the needs of electric vehicles (EVs). EVs have unique performance characteristics that place greater emphasis on tyre requirements like High traction, Wear resistance, Low Cavity & pattern noise, Low Rolling resistance and High load carrying capacity. Hence, the tyre manufacturers have been working relentlessly to create advanced designs that can meet these requirements. This paper will cover various aspects of tyre design, including tyre cavity, tread patterns, sidewall design, compound & reinforcement design, and various construction techniques. The tyre cavity and tread pattern play a crucial role in the overall performance of an EV.
Technical Paper

Brake Control Allocation Employing Vehicle Motion Feedback for Four-Wheel-Independent-Drive Vehicle

2023-11-05
2023-01-1866
This paper uses the brake control allocation method for Electric Vehicles (EVs) based on system-level vehicle Reference Point (RP) motion feedback. The RP motion control is an alternative to the standard brake torque allocation methods and results in improved vehicle stability in both longitudinal and lateral directions without requiring additional measurements beyond what is available in EVs with ABS and ESP. The proposed control law simplifies the brake torque allocation algorithm, reduces overall development time and effort, and merges most of the braking systems into one. Additionally, the measured or estimated signals required are reduced compared to the standard approach. The system-level RP measurements and references are transformed into individual wheel coordinate systems, where tracking is ensured by actuating both friction torques and electric motor regenerative torques using a proposed brake torque blending mechanism.
Technical Paper

Applying Ferritic Nitrocarburizing (FNC) in Conjunction with Smart ONC® on GCI Brake Rotors: The New Generation of FNC Rotors to Meet the Euro 7 Standards

2023-11-05
2023-01-1888
As the regulations aiming to limit air pollution become stricter, the battle against non-exhaust emissions known to be harmful to human health and the environment is attracting more focus and extending worldwide. EVs are equipped with a hybrid braking system combining regenerative and hydraulic braking to provide the same performance as traditional vehicles. Whenever the regenerative braking torque is insufficient to give the necessary deceleration rate, the hydraulic and electromechanical braking torque is applied. Thus, the recuperative braking of EVs reduces the need for brakes. As the brakes are not used as often, dust and rust will accumulate and impede their performance, so brake problems can arise from not using them enough. Due to the extra weight of EVs compared to ICEVs, more particulates are released through increased corrosion and friction on the braking system.
Technical Paper

A Multiple-Input Multiple-Output Radar-Based Rider Assistance System for Personal Light Electric Vehicles

2023-07-06
2023-01-5040
The use of personal light electric vehicles (PLEVs), such as electric scooters, has rapidly increased in recent years. However, their widespread use has raised concerns about rider safety due to their vulnerability in shared traffic spaces. To address this issue, this paper presents a radar-based rider assistance system aimed at enhancing the safety of PLEV riders. The system consists of an adaptive feedback system and a single-channel anti-lock braking system (ABS). The adaptive feedback system uses multiple-input multiple-output (MIMO) radar sensors to detect nearby objects and provide real-time warnings to the rider through haptic, visual, and acoustic signals. The system takes into account traffic density and uses online data to warn about obscured objects, thereby improving the rider’s situational awareness. Results from testing the feedback system show that it effectively detects potential collisions and provides warning signals, reducing the risk of accidents.
Technical Paper

Performance, Combustion and Emissions Evaluation of Liquid Phase Port-Injected LPG on a Single Cylinder Heavy-Duty Spark Ignited Engine

2023-04-11
2023-01-0245
Liquefied petroleum gas (LPG), like many other alternative fuels, has witnessed increased adoption in the last decade, and its use is projected to rise as stricter emissions regulations continue to be applied. However, much of its use is limited to dual fuel applications, gaseous phase injection, light-duty passenger vehicle applications, or scenarios that require conversion from gasoline engines. Therefore, to address these limitations and discover the most efficient means of harnessing its full potential, more research is required in the development of optimized fuel injection equipment for liquid port and direct injection, along with the implementation of advanced combustion strategies that will improve its thermal efficiency to the levels of conventional fuels.
Technical Paper

Compound Brake Control for Improved Ride Comfort for Dual-rotor In-wheel Motor Electric Vehicles

2023-04-11
2023-01-0526
Aiming at the problem of braking shock caused by the inconsistent response time of the inner motor (IM), the outer motor (OM) and the hydraulic brake when the regenerative braking mode of dual-rotor in-wheel motor (DRIWM) is switched, this paper proposes a U-shaped transition coordinated control strategy for the DRIWM. Ensure that the total braking torque can be smoothly transitioned when any one or more of the hydraulic braking torque, the braking torque of the IM and the braking torque of the OM enter/exit braking. The dynamic model of electric vehicle (EV) with DRIWMs is established, the division of braking mode is based on the principle of optimal DRIWM system efficiency, and the U-shaped transition coordinated controller of DRIWM is designed. Finally, two cases of switching the IM single braking mode to hydraulic braking mode and OM and hydraulic coordinated braking mode switching to compound braking mode are taken as examples to verify.
Technical Paper

Development and Test of ABS/TCS Controller with Dual-Axis Dynamometer HIL Platform

2023-04-11
2023-01-0824
This paper describes a Hardware-In-the-Loop (HIL) platform based on the dual-axis dynamometer for development and validation of ABS/TCS controllers. Antilock Braking System (ABS) and Traction Control System (TCS) are standard equipment for passenger vehicles. The ABS, an anti-skid braking assistance system, promotes safety by preventing the locking of wheels during braking. TCS is a control system that prevents the wheels from slipping by moderating driving power to the one that is losing its grip on the road. The real-time platform is based on a dSPACE vehicle model and the simulation environment, and it consists of an actual drive motor, hydraulic braking system and Chroma dual-axis dynamometer test bench, which provide more realistic and complicated conditions than the one-axis platform. With dual-axis architecture, it could effectively perform simulation results of model on two axes.
Technical Paper

Methodologic Assessment of Brake-by-Wire System Modelling with Regard to Accuracy, Model Complexity and Optimization Efforts

2023-04-11
2023-01-0666
Brake-by-wire systems are an innovative and important component of modern high-performance and also electrified vehicles. Due to their decoupled architecture, they enable driver-independent vehicle dynamics control (e.g., brake torque blending) and easy integration of assistance functionalities (e.g. Emergency Brake Assist (EBA)). On the other hand, the development of these functions can cause high costs and development effort, and testing can be critical in case of improper gain tuning. Therefore, already in the concept phase, a large part of the testing is shifted to virtual environments and simulations that allow safe and reproducible experiments without damage. Therefore, suitable and reliable models are needed to represent reality as accurately as possible. This paper deals with the modelling of a purely electrohydraulic brake-by-wire system and a hybrid system with electrohydraulic brakes on the front axle and electromechanical brakes on the rear axle.
Technical Paper

Driveline Control Influence when ABS Active

2023-04-11
2023-01-0662
The interaction between driveline control and anti-lock braking system (ABS) control in electric vehicles (EV) was investigated based on multi-body dynamics (MBD) model and control model co-simulation. Two primary driveline control algorithms, active damping control and wheel flare control, were integrated with ABS control in Simulink model and the influence on ABS control was studied. The event for high mu to low mu transition was simulated. When ABS control is active on low mu surface, the vehicle shows large wheel slip and long duration time before wheel speed returns to stable control. This performance could be improved with activating driveline control. Deceleration uniformity metric shows that active damping control has very small effect when ABS control becomes stable after passing through the high mu to low mu transition period. Driveline damping control can help to reduce vibration, but it is difficult to find satisfied tuning for wheel speed performance.
Technical Paper

A Comparison Study on Control Strategies for Optimization of an Anti-Lock Brake System Algorithm Based on Tire Force Measurement in Pure and Combined Slip Conditions of an Automobile

2023-04-11
2023-01-0694
The Anti-Lock Braking System (ABS) is a safety critical feature primarily used to control slipping of wheels, to maximize available traction and minimize stopping distance. Regulatory authorities of many countries have mandated implementation of an ABS as a compulsory safety feature to be present in all road legal automobiles. Hence, apart from avoiding wheel lock-up, an ABS must also ensure that the vehicle maintains its handling stability and steerability while braking. Thus, it is important that the ABS controller modulate and apply adequate amount of brake cylinder pressure. This paper suggests the use of a Tire Force based algorithm to analyze vehicle behavior and accordingly a control law is employed to modulate the wheel brake pressure.
Technical Paper

Optimized PID Controller Using Genetic Algorithm for Anti-lock Brake System

2023-04-11
2023-01-0696
The anti-lock brake system (ABS) is a vital system in modern vehicles that prevents automotive wheels from locking during an emergency brake. This paper aims to introduce an efficient, optimized proportional integral derivative (PID) controller tuned using a genetic algorithm (GA) to enhance the performance of ABS. The PID control method is a very famous control algorithm employed in numerous engineering applications. The GA is used to solve the nonlinear optimization problem and search for the optimum PID controller gains by identifying the solution to the problem. A mathematical model of ABS is derived and simulated using Matlab and Simulink software. The proposed optimized PID-controlled ABS is compared to the conventional ABS controlled using a Bang-Bang controller. System performance criteria are evaluated and assessed under different road adhesion coefficient values to judge the success of the proposed PID controller tuned using GA.
Technical Paper

Mathematical formulation and Analysis of Brake Judder

2023-04-11
2023-01-0148
The Brake judder is a low-level vibration caused due to Disc Thickness Variation (DTV), Temperature, Brake Torque Variation (BTV), thermal degradation, hotspot etc. which is a major concern for the past decades in automobile manufacturers. To predict the judder performance, the modelling methods are proposed in terms of frequency and BTV respectively. In this study, a mathematical model is constructed by considering full brake assembly, tie rod, coupling rod, steering column, and steering wheel as a spring mass system for identifying judder frequency. Simulation is also performed to predict the occurrence of brake judder and those results are validated with theoretical results. Similarly, for calculating BTV a separate methodology is proposed in CAE and validated with experimental and theoretical results.
X