Refine Your Search

Topic

Author

Search Results

Standard

Free Motion Headform Impact Tests of Heavy Truck Cab Interiors

2024-04-25
WIP
J2424
This SAE Recommended Practice describes the test procedures for conducting free motion headform testing of heavy truck cab interior surfaces and components. A description of the test set-up, instrumentation, impact configuration, target locations, and data reduction is included.
Standard

Off-Road Self-Propelled Work Machines Operator Enclosure Environment Part 1: Terms and Definitions

2024-04-23
CURRENT
J3078/1_202404
SAE J3078 provides test methods and criteria for the evaluation of the operator enclosure environment in earth-moving machinery as defined in ISO 6165. SAE J3078/1 gives the terms and definitions which are used in other parts of SAE J3078. It is applicable to Off-Road Self-Propelled Work Machines as defined in SAE J1116 and tractors and machinery for agriculture and forestry as defined in ANSI/ASAE S390.
Standard

Forward Collision Warning and Automatic Emergency Braking XIL Simulation Procedure and Minimum Performance Requirements - Truck and Bus

2024-03-25
WIP
J3319
This SAE Recommended Practice (RP) establishes uniform vehicle level simulation procedure for Forward Collision Avoidance and Mitigation (FCAM) systems (also identified as Automatic Emergency Braking (AEB) systems) used in highway commercial vehicles and coaches greater than 4535 Kg (10,000 lb.) GVWR. For Hardware-in-the-loop implementation of the recommended practice, the ESC system will be part of the test. This RP does not apply to trailers, dollies, etc. and does not intend to exclude any particular system or sensor technology. These FCAM systems utilize various methodologies to identify, track and communicate data to the operator and vehicle systems to warn, intervene and/or mitigate in the longitudinal control of the vehicle.
Standard

Fan Guard for Off-Road Machines

2024-03-12
WIP
J1308
This practice applies to guarding of engine cooling fans used on Off-Road Self-Propelled Work Machines defined in SAE J1116. It does not include guarding for belts, pulleys, or other rotating equipment used on these machines.
Standard

Safety Labels of Off-Road Work Machines

2024-01-16
CURRENT
J115_202401
SAE J115 specifies the relevant ISO standards for application to safety labels for use on off-road work machines as defined in SAE J1116.
Best Practice

Initial Research Summation Overview: Vehicle-VRU Safety Landscape

2023-12-18
CURRENT
VRUSC-001-2023
This white paper is an examination of the increasing rate of injuries and deaths worldwide of a class of road users, often referred to as “vulnerable road users” (VRUs), with a focus on pedestrians, cyclists, scooterists, highway road workers, safety, and emergency personnel. The potential to leverage pragmatic, evidence-based technology countermeasures to reduce these collisions, and the severity of those that do occur, is also examined.
Standard

Wheels - Lateral Impact Test Procedure - Road Vehicles

2023-12-13
CURRENT
J175_202312
The SAE Recommended Practice establishes minimum performance requirements and related uniform laboratory test procedures for evaluating lateral (curb) impact collision resistance of all wheels intended for use on passenger cars and light trucks.
Standard

Operator Enclosure Pressurization System Test Procedure

2023-12-07
CURRENT
J1012_202312
This SAE Recommended Practice establishes a uniform test procedure for evaluating performance of operator enclosure pressurization systems for construction, general-purpose industrial, agricultural, forestry, and specialized mining machinery as categorized in SAE J1116 for off-road, self-propelled work machines.
Standard

Guidelines for Liquid Level Indicators

2023-10-06
CURRENT
J48_202310
This SAE Recommended Practice pertains to liquid level determination for any fluid compartment of off-road work machines as defined in SAE J1116 and ISO 6165.
Best Practice

AVSC Best Practice for Developing ADS Safety Performance Thresholds Based on Human Driving Behavior

2023-08-29
CURRENT
AVSC00012202308
Automated driving system (ADS) developers need a way to describe safe and competent driving for automated driving system-dedicated vehicles (ADS-DVs) in a way that is relatable to how stakeholders interpret safe driving today. Metrics informed by competent and safe human behavior could improve understanding and confidence in ADS-DVs. One way to make ADS safety performance relatable to stakeholders is to adopt an intuitive comparison to behaviors displayed on the road by human drivers. This best practice outlines an approach which involves comparing the on-road driving behavior of ADSs to that of human drivers, aiming to gain a deeper understanding of ADS behavior and its implications. It includes and assessment that centers on the predictability and similarity of ADS behavior relative to observed human driving behavior. By adopting this approach, a more comprehensive evaluation of the performance of ADS fleets can be achieved.
Best Practice

AVSC Best Practice for Continuous Monitoring and Improvement after Deployment

2023-07-25
CURRENT
AVSC00011202307
Successful scaling of automated driving system (ADS) technology and realization of its full potential will require developers and service providers to continuously monitor performance of their fleet and enact prompt improvements should issues arise. ADS developers and manufacturers can use the data collected from vehicles in active deployments (e.g., safety performance data) to proactively confirm initial risk assumptions and feed other safety management processes. This best practice provides an approach to continuous monitoring and potential improvement of safety performance of ADS-DVs after deployment. It also outlines approaches to analyzing data related to known and unknown variations in the ADS-DV’s operating environment and complements other AVSC best practices that provide metrics and methods which can be used to monitor safety [AVSC00006202103, AVSC00008202111] while considering important factors pertaining to how data is collected, analyzed, and used [AVSC00004202009].
Standard

Truck and Bus Lane Departure Warning Systems Test Procedure and Minimum Performance Requirements

2023-07-24
WIP
J3045
This SAE Recommended Practice establishes a uniform, powered vehicle test procedure and minimum performance requirement for lane departure warning systems used in highway trucks and buses greater than 4546 kg (10000 pounds) GVW. Systems similar in function but different in scope and complexity, including Lane Keeping/Lane Assist and Merge Assist, are not included in this document. This document does not apply to trailers, dollies, etc. This document does not intend to exclude any particular system or sensor technology.The specification will test the functionality of the LDWS (e.g., ability to detect lane presence, and ability to detect an unintended lane departure), its ability to indicate LDWS engagement, its ability to indicate LDWS disengagement, and determine the point at which the LDWS notifies the Human Machine Interface (HMI) or vehicle control system that a lane departure event is detected.
Standard

Cast Shot and Grit Size Specifications for Cleaning and Peening

2023-06-27
CURRENT
J444_202306
This SAE Recommended Practice pertains to blast cleaning and shot peening and provides for standard cast shot and grit size numbers. For shot, this number corresponds with the opening of the nominal test sieve, in ten thousandths of inches1, preceded by an S. For grit, this number corresponds with the sieve designation of the nominal test sieve with the prefix G added. These sieves are in accordance with ASTM E11. The accompanying shot and grit classifications and size designations were formulated by representatives of shot and grit suppliers, equipment manufacturers, and automotive users.
Standard

Alarm - Backup - Electric Laboratory Performance Testing

2023-06-27
CURRENT
J994_202306
The scope of this SAE Standard is the definition of the functional, environmental, and life cycle test requirements for electrically operated backup alarm devices primarily intended for use on off-road, self-propelled work machines as defined by SAE J1116 (limited to categories of (1) construction, and (2) general purpose industrial).
Standard

Brake Dynamometer Squeal Noise Test Procedure for Commercial Vehicles with Air Brakes

2023-06-02
CURRENT
J3165_202210
This SAE Recommended Practice applies to commercial vehicles above 4540 kg of gross vehicle weight rating equipped with air brakes used under normal operating conditions. The procedure incorporates high and low-temperature test matrices, but does not fully account for the effects of the environment on brake squeal. Much research is currently underway in this area. This document defines brake squeal as a peak noise level of at least 80 dB(A) between 500 Hz and 17 kHz for air disc and drum brakes on on-road vehicles.
Standard

Recommended Corrosion Test Methods for Commercial Vehicle Components

2023-05-31
CURRENT
J2721_202305
This document establishes recommended practices to validate acceptable corrosion performance of metallic components and assemblies used in medium truck, heavy truck, and bus and trailer applications. The focus of the document is methods of accelerated testing and evaluation of results. A variety of test procedures are provided that are appropriate for testing components at various locations on the vehicle. The procedures incorporate cyclic conditions including corrosive chemicals, drying, humidity, and abrasive exposure. These procedures are intended to be effective in evaluating a variety of corrosion mechanisms as listed in Table 1. Test duration may be adjusted to achieve any desired level of exposure. Aggravating conditions such as joint rotation, mechanical stress, and temperature extremes are also considered. This document does not address the chemistry of corrosion or methods of corrosion prevention. For information in these areas, refer to SAE J447 or similar standard.
Standard

Free-Rolling Cornering Test for Truck and Bus Tires

2023-05-10
CURRENT
J2429_202305
This SAE Recommended Practice describes a test method for determination of heavy truck (Class VI, VII, and VIII) tire force and moment properties under cornering conditions. The properties are acquired as functions of normal force and slip angle using a sequence specified in this practice. At each normal force increment, the slip angle is continually ramped or stepped. The data are suitable for use in vehicle dynamics modeling, comparative evaluations for research and development purposes, and manufacturing quality control. This document is intended to be a general guideline for testing on an ideal machine. Users of this SAE Recommended Practice may modify the recommended protocols to satify the needs of specific use-cases, e.g., reducing the recommended number of test loads and/or pressures for benchmarking purposes. However, due care is necessary when modifying the protocols to maintain data integrity.
Standard

R134a Refrigerant Charge Determination Test Method

2023-04-19
WIP
J3023
The purpose of this document is to establish guidelines for determining the critical R134a refrigerant charge for off-road, self-propelled work machines as defined in SAE J1116 and Agricultural Tractors as defined in ANSI/ASAE S390. It will develop a minimum to maximum refrigerant charge range in which the HVAC system can maintain proper operation. Operating conditions and characteristics of the equipment will influence the optimum charge. Since these conditions and characteristics vary greatly from one application to another, careful consideration should be taken to determine the optimum R134a refrigerant charge for the HVAC system.
X