Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Article

SAE International extends call for abstracts, seeks submissions for AeroTech conference

2022-08-11
Engineering Events staff at SAE International in Warrendale, Pennsylvania, have extended the call for abstracts through September 21 for the organization’s AeroTech aerospace and defense technology conference, which will take place at the Fort Worth Convention Center in Fort Worth, Texas, March 14-16, 2023. Visit the AeroTech call for abstracts page for more information and to get started.
Article

Quality management experts provide guidance on AS9100 standard

2021-11-04
Quality management professionals across the global aerospace and defense community are convening for one hour – Wednesday, October 27th, starting at 10 am Pacific Daylight Time (PDT) – to discuss the AS9100 international standard. Register to take part in the free AeroTech webinar, hosted by SAE International and Tektronix, designed to help manufacturers, contractors, and subcontractors throughout the global aviation, space, and defense supply chain keep pace with and meet the requirements of AS9100 international quality management system standard.
Magazine

Aerospace & Defense Technology: August 2021

2021-08-01
Thermal Management Techniques in Avionics Cooling Curing the Porosity Problem in Additive Manufacturing Space-Qualified Crystal Oscillators Reimagining Automated Test During a Pandemic EW: New Challenges, Technologies, and Requirements Software Enables New-Age, Flexible Test Solution for Analog and Digital Radios Formal Process Modeling to Improve Human-Decision-Making During Test and Evaluation Range Control Using the Innoslate software tool to formally model the process of conducting test range events can expose previously overlooked ambiguities and identify high-value decision points? Test and Evaluation of Autonomy for Air Platforms Tools, approaches, and insights to confidently approach the safe, secure, effective, and efficient testing of autonomy on air platforms.
Journal Article

Algorithm Development for Avoiding Both Moving and Stationary Obstacles in an Unstructured High-Speed Autonomous Vehicular Application Using a Nonlinear Model Predictive Controller

2020-10-19
Abstract The advancement in vision sensors and embedded technology created the opportunity in autonomous vehicles to look ahead in the future to avoid potential obstacles and steep regions to reach the target location as soon as possible and yet maintain vehicle safety from rollover. The present work focuses on developing a nonlinear model predictive controller (NMPC) for a high-speed off-road autonomous vehicle, which avoids undesirable conditions including stationary obstacles, moving obstacles, and steep regions while maintaining the vehicle safety from rollover. The NMPC controller is developed using CasADi tools in the MATLAB environment. The CasADi tool provides a platform to formulate the NMPC problem using symbolic expressions, which is an easy and efficient way of solving the optimization problem. In the present work, the vehicle lateral dynamics are modeled using the Pacejka nonlinear tire model.
Training / Education

FEA Beyond Basics: Thermal Analysis Web Course RePlay

Anytime
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Technical Paper

Design, Synthesis and Analysis of Loader Bucket, Boom and Linkages for Amphibious Infantry Combat Vehicle

2019-10-11
2019-28-0124
Currently, for various military activities such as construction of bridges, digging trenches, construction of roads and clearing the area during landslides, separate unit of bulldozer for dozing operation and loader for loading operation is required. But the need is to develop a single unit which could perform both of these operations efficiently and simultaneously. The paper discusses about the development of dozer bucket mechanism as a single unit to perform dozing and loading operation and connected to the amphibious infantry combat vehicle. To develop the dozer bucket mechanism synthesis of mechanism (Linkages and Boom) has carried out and care has taken to fulfill the above stated functional requirement and satisfy the geometrical constraints. The synthesis of mechanism is done with the help of ‘CATIA’ software packages. The force calculation on various joints at the different position of mechanism has evaluated with the help of ’ADAMS’ software.
Technical Paper

Implementation of Active & Passive Safety for Heavy Article Tilter and Positioner (HATP)

2019-01-09
2019-26-0003
Mobile heavy article tilter and positioner (HATP) is special purpose vehicle designed to level, articulate and positioning of very heavy load within the accuracy of arc minutes and in a stipulated time in fully auto mode. HATP system uses sophisticated electronic controller system to carry out required task in auto mode. This electronic controller system comprises of various types of electronic hardware, software, sensors and actuators. As this system is dealing with heavy load, any failure in any of subsystem of HATP can result into catastrophe. Therefore active and passive safety measure at various levels must be incorporated into system which firstly prevents the failure and reduce the effect of failure. The safety system for HATP system has been divided in three major levels: 1. Access level safety 2. Operational safety 3. Preventive safety. All three levels of safety is incorporated at appropriate subsystem based on Risk Priority Number (RPN) and failure mode effect analysis.
Journal Article

Numerical Analysis of Blast Protection Improvement of an Armored Vehicle Cab by Composite Armors and Anti-Shock Seats

2018-12-05
Abstract The objective of this article is to evaluate the effects of different blast protective modules to military vehicle structures and occupants. The dynamic responses of the V-shape integral basic armor, the add-on honeycomb sandwich structure module, and the anti-shock seat-dummy system were simulated and analyzed. The improvements of occupant survivability by different protective modules were compared using occupant injury criteria. The integral armored cab can maintain the integrity of the cab body structure. The add-on honeycomb sandwich armor reduces the peak structural deformation and velocity of the cab floor by 34.9% and 47.4%, respectively, compared with the cab with integral armors only. The integral armored cab with the anti-shock seat or the honeycomb sandwich structures reduces the occupant shock responses below the injury criteria. For different blast threat intensities, the selection of appropriate protective modules can meet protection requirements.
Technical Paper

Enhanced HUD Symbology Associated with Recovery from Unusual Attitudes

1990-09-01
901919
The present study examined the degree of spatial awareness obtained using what has been called an Augie Arrow, enabled so that it could be displayed as either a “nearest horizon pointer” (NH) or an “up arrow” (UP) indicator. Another issue investigated concerned the usefulness of analog dials vice digital readouts of airspeed and altitude as an aid to recovery. During simulated flight, twelve subjects were required to recover from six unusual attitudes employing one of four HUD formats: (1) Standard HUD, (2) Augie Arrow, (3) Analog Dials, and (4) Augie Arrow with Analog Dials. Results revealed that the Augie Arrow produced the most rapid recovery time. The Augie Arrow configuration was optimal at the most severe unusual attitudes, especially for the NH mechanization. The Dials only HUD was not particularly helpful in recovery, and the Arrow with Dials HUD was rated as a significant clutter problem.
X