Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Potential of Serial Hybrid Powertrain Concepts towards decarbonizing the Off-Highway Machinery

2024-06-12
2024-37-0018
Today’s engines used in Agriculture, Mining and Construction are designed for robustness and cost. Here, the Diesel powertrain is the established mainstream solution, offering long operation times without refueling at any desired power rating. In view of the steps towards Carbon Neutrality by 2050 this segment of the Transportation Sector needs to reduce its CO2 emissions. Currently, the EU and US emissions legislations (EU Stage V / EPA Tier4) do not include a CO2 reduction scheme but is expected to change with the next update towards EU Stage VI / EPA Tier5 coming into effect 2030 and after. Larger power and operation range still require the use of renewable, liquid fuels or hydrogen. The cost-up of such fuels could be counterbalanced by more efficient engines in combination with a hybridized powertrain.
Technical Paper

Optimization of a Sliding Rotary Vane Pump for Heavy Duty Internal Combustion Engine cooling

2024-06-12
2024-37-0030
The benefits introduced by the replacement of conventional centrifugal pumps with volumetric machines for Internal Combustion Engines (ICEs) cooling were experimentally and theoretically proven in literature. In particular, Sliding Rotary Vane Pumps (SVRPs) ensure to achieve an interesting reduction of ICEs fuel consumption and CO2 emissions. Despite volumetric pumps are a reference technology for ICE lubrication oil circuits, the application in ICE cooling systems still not represent a ready-to-market solution. Particularly challenging is the case of Heavy-Duty ICE due to the wide operating range the pump covers in terms of flow rate delivered. Generally, SVRPs are designed to operate at high speeds to reduce machine dimensions and, consequently, the weight. Nevertheless, speed increase could lead to a severe penalization of pump performance since the growth of the friction losses.
Training / Education

Autonomous Technology in Long-Haul Trucking

2024-05-23
Billions of dollars have been invested in AV trucking. It is no longer a matter of IF, it is a matter of When, Where, Who and How? This will be the most disruptive event to happen in our supply chains in more than 4 decades. Are you ready to help your company usher in the most disruptive technology? This class will help you prepare and understand what you will need to do to become part of the ecosystem. You will learn how to identify what needs to start, stop, and change for you to adopt, integrate, and scale. Join us to learn the answers to key questions like the following: 1)How will maintenance change in the AV trucking ecosystem?
Training / Education

Design for Manufacture and Assembly (DFM/DFA)

2024-05-16
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. This course provides both a functional understanding of the principles involved in conducting a Design for Manufacture/Design for Assembly (DFM/DFA) study and the process for implementing a DFM/DFA culture into the organization.
Training / Education

Design for Manufacturing & Assembly (DFM/DFA)

2024-05-13
Design for Manufacturing and Assembly (DFM+A), pioneered by Boothroyd and Dewhurst, has been used by many companies around the world to develop creative product designs that use optimal manufacturing and assembly processes. Correctly applied, DFM+A analysis leads to significant reductions in production cost, without compromising product time-to-market goals, functionality, quality, serviceability, or other attributes. In this two-day course, you will not only learn the Boothroyd Dewhurst Method, you will actually apply it to your own product design!
Technical Paper

Path-Tracking Control for Four-Wheel Steer/Drive Agricultural Special Electric Vehicles Considering Stability

2024-04-25
2024-01-5051
With the modernization of agriculture, the application of unmanned agricultural special vehicles is becoming increasingly widespread, which helps to improve agricultural production efficiency and reduce labor. Vehicle path-tracking control is an important link in achieving intelligent driving of vehicles. This paper designs a controller that combines path tracking with vehicle lateral stability for four-wheel steer/drive agricultural special electric vehicles. First, based on a simplified three-degrees-of-freedom vehicle dynamics model, a model predictive control (MPC) controller is used to calculate the front and rear axle angles. Then, according to the Ackermann steering principle, the four-wheel independent angles are calculated using the front and rear axle angles to achieve tracking of the target trajectory.
Standard

Off-Road Self-Propelled Work Machines Operator Enclosure Environment Part 1: Terms and Definitions

2024-04-23
CURRENT
J3078/1_202404
SAE J3078 provides test methods and criteria for the evaluation of the operator enclosure environment in earth-moving machinery as defined in ISO 6165. SAE J3078/1 gives the terms and definitions which are used in other parts of SAE J3078. It is applicable to Off-Road Self-Propelled Work Machines as defined in SAE J1116 and tractors and machinery for agriculture and forestry as defined in ANSI/ASAE S390.
Technical Paper

Test Vector Development for Verification and Validation of Heavy-Duty Autonomous Vehicle Operations

2024-04-09
2024-01-1973
The current focus in the ongoing development of autonomous driving systems (ADS) for heavy duty vehicles is that of vehicle operational safety. To this end, developers and researchers alike are working towards a complete understanding of the operating environments and conditions that autonomous vehicles are subject to during their mission. This understanding is critical to the testing and validation phases of the development of autonomous vehicles and allows for the identification of both the nominal and edge case scenarios encountered by these systems. Previous work by the authors saw the development of a comprehensive scenario generation framework to identify an operating domain specification (ODS), or external and internal conditions an autonomous driving system can expect to encounter on its mission to form critical scenario groups for autonomous vehicle testing and validating using statistical patterns, clustering, and correlation.
Technical Paper

Braking Judder Test and Simulation Analysis of Commercial Vehicle

2024-04-09
2024-01-2342
Brake judder affects vehicle safety and comfort, making it a key area of research in brake NVH. Transfer path analysis is effective for analyzing and reducing brake judder. However, current studies mainly focus on passenger cars, with limited investigation into commercial vehicles. The complex chassis structures of commercial vehicles involve multiple transfer paths, resulting in extensive data and testing challenges. This hinders the analysis and suppression of brake judder using transfer path analysis. In this study, we propose a simulation-based method to investigate brake judder transfer paths in commercial vehicles. Firstly, road tests were conducted to investigate the brake judder of commercial vehicles. Time-domain analysis, order characteristics analysis, and transfer function analysis between components were performed.
Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
Technical Paper

A Dynamic Model for the Rolling Resistance Considering Thermal States and Conditions

2024-04-09
2024-01-2296
Planning for charging in transport missions is vital when commercial long-haul vehicles are to be electrified. In this planning, accurate range prediction is essential so the trucks reach their destinations as planned. The rolling resistance significantly influences truck energy consumption, often considered a simple constant or a function of vehicle speed only. This is, however, a gross simplification, especially as the tire temperature has a significant impact. At 80 km/h, a cold tire can have three times higher rolling resistance than a warm tire. A temperature-dependent rolling resistance model is proposed. The model is based on thermal networks for the temperature at four places around the tire. The model is tuned and validated using rolling resistance, tire shoulder, and tire apex temperature measurements with a truck in a climate wind tunnel with ambient temperatures ranging from -30 to 25 °C at an 80 km/h constant speed.
Technical Paper

Development of a Dual Motor Beam eAxle for Medium Duty Commercial Vehicle Application

2024-04-09
2024-01-2162
Considering the current trend towards the electrification of commercial vehicles, the development of Beam eAxle solutions has become necessary. The utilization of an electric drive unit in heavy-duty solid axle-based commercial vehicles presents unique and demanding challenges. These include the necessity for elevated peak and continuous torque while meeting packaging constraints, structural integrity requirements, and extended service life. One such solution was developed by BorgWarner to address these challenges. This paper offers a comprehensive overview of the design and development process undertaken for this Dual Motor Beam eAxle system. This includes the initial comparison of various eAxle solutions, the specifications of components selected for this design, and the initial results from dyno and vehicle development.
X