Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparative Study of Knock Formation in Gasoline and Methanol Combustion Using a Multiple Spark Ignition Approach: An Optical Investigation

2024-04-09
2024-01-2105
Engine knock is a major challenge that limits the achievement of higher engine efficiency by increasing the compression ratio of the engine. To address this issue, using a higher octane number fuel can be a potential solution to reduce or eliminate the propensity for knock and so obtain better engine performance. Methanol, a promising alternative fuel, can be produced from conventional and non-conventional energy resources, which can help reduce pollutant emissions. Methanol has a higher octane number than typically gasolines, which makes it a viable option for reducing knock intensity. This study compared the combustion characteristics of gasoline and methanol fuels in an optical spark-ignition engine using multiple spark plugs. The experiment was carried out on a single-cylinder four-stroke optical engine. The researchers used a customized metal liner with four circumferential spark plugs to generate multiple flame kernels inside the combustion chamber.
Technical Paper

Hydrogen Combustion using Port-fuel Injections in a Heavy-Duty Optical Diesel Engine Converted to Spark Ignition Operation

2023-09-29
2023-32-0043
This study examines the use of hydrogen as a fuel for internal combustion engines to decrease greenhouse gas emissions. The focus is on hydrogen combustion at leaner mixture conditions, which has the potential to increase efficiency and reduce NOx emissions. While metal engine experiments have established these benefits, there are only a few optical studies on pure hydrogen combustion under lean operating conditions. This study reports optical measurements performed in a heavy-duty optical diesel engine converted to spark-ignition operation with port-fuel injections and varying spark timing, at air-excess ratios (lambda) of 2.5 and 3. The engine was equipped with a flat-shaped optical piston that allowed for bottom-view imaging of the combustion process. High-speed natural combustion luminosity images were recorded, along with in-cylinder pressure measurements.
Technical Paper

Fuel Stratification to Improve the Lean Limit in a Methane-Fueled Heavy-Duty Spark-Ignition Optical Engine

2023-08-28
2023-24-0045
Natural gas is an attractive fuel for heavy-duty internal combustion engines as it has the potential to reduce CO2, particulate, and NOx emissions. This study reports optical investigations on the effect of methane stratification at lean combustion conditions in a heavy-duty optical diesel engine converted to spark-ignition operation. The combination of the direct injector (DI) and port-fuel injectors (PFI) fueling allows different levels of in-cylinder fuel stratification. The engine was operated in skip-firing mode, and high-speed natural combustion luminosity color images were recorded using a high-speed color camera from the bottom view, along with in-cylinder pressure measurements. The results from methane combustion based on port-fuel injections indicate the lean burn limit at λ = 1.4. To improve the lean limit of methane combustion, fuel stratification is introduced into the mixture using direct injections.
Technical Paper

High-Speed 2-D Raman and Rayleigh Imaging of a Hydrogen Jet Issued from a Hollow-Cone Piezo Injector

2023-08-28
2023-24-0019
This paper reports high-speed (10 kHz and 100 kHz) 2-D Raman/Rayleigh measurements of a hydrogen (H2) jet issued from a Bosch HDEV4 hollow-cone piezo injector in a high-volume constant pressure vessel. During the experiments, a Pa = 10 bar ambient environment with pure nitrogen (N2) is created in the chamber at T = 298 K, and pure H2 is injected vertically with an injection pressure of Pi = 51 bar. To accommodate the transient nature of the injections, a kHz-rate burst-mode laser system with second harmonic output at λ = 532 nm and high-speed CMOS cameras are employed. By sequentially separating the scattered light using dichroic mirrors and bandpass filters, both elastic Rayleigh (λ = 532 nm) and inelastic N2 (λ = 607 nm) and H2 (λ = 683 nm) Raman signals are recorded on individual cameras. With the help of the wavelet denoising algorithm, the detection limit of 2-D Raman imaging is greatly expanded.
Technical Paper

Effects of Engine Speed on Prechamber-Assisted Combustion

2023-08-28
2023-24-0020
Lean combustion technologies show promise for improving engine efficiency and reducing emissions. Among these technologies, prechamber-assisted combustion (PCC) is established as a reliable option for achieving lean or ultra-lean combustion. In this study, the effect of engine speed on PCC was investigated in a naturally aspirated heavy-duty optical engine: a comparison has been made between analytical performances and optical flame behavior. Bottom view natural flame luminosity (NFL) imaging was used to observe the combustion process. The prechamber was fueled with methane, while the main chamber was fueled with methanol. The engine speed was varied at 1000, 1100, and 1200 revolutions per minute (rpm). The combustion in the prechamber is not affected by changes in engine speed. However, the heat release rate (HRR) in the main chamber changed from two distinct stages with a faster first stage to more gradual and merged stages as the engine speed increased.
Technical Paper

Experimental Investigations of Methane-Hydrogen Blended Combustion in a Heavy-Duty Optical Diesel Engine Converted to Spark Ignition Operation

2023-04-11
2023-01-0289
The global need for de-carbonization and stringent emission regulations are pushing the current engine research toward alternative fuels. Previous studies have shown that the uHC, CO, and CO2 emissions are greatly reduced and brake thermal efficiency increases with an increase in hydrogen concentration in methane-hydrogen blends for the richer mixture compositions. However, the combustion suffers from high NOx emissions. While these trends are well established, there is limited information on a detailed optical study on the effect of air-excess ratio for different methane-hydrogen mixtures. In the present study, experimental investigations of different methane-hydrogen blends between 0 and 100% hydrogen concentration by volume for the air-excess ratio of 1, 1.4, 1.8, and 2.2 were conducted in a heavy-duty optical diesel engine converted to spark-ignition operation. The engine was equipped with a flat-shaped optical piston to allow bottom-view imaging of the combustion chamber.
Technical Paper

Multiple Spark Ignition Approach to Burn Ammonia in a Spark-Ignition Engine: An Optical Study

2023-04-11
2023-01-0258
The future of the internal combustion (IC) engine relies on carbon-free fuels to mitigate climate change. Ammonia (NH3) is a promising carbon-free fuel, which can be used as an energy carrier for hydrogen (H2) and directly as a combustible fuel inside the engines. However, burning pure ammonia fuel is difficult due to its low flammability, burning velocity, and consequently large cycle-to-cycle variation. This study used a multiple-spark-plug approach to burn pure ammonia gas with reduced combustion duration and higher engine power output. The natural flame luminosity (NFL) imaging method was used to capture the multiple flames initiated by various ignition sites. In order to perform the experiment a customized liner having four spark plugs installed at equal spacing to each other, and to compare the results with conventional spark-ignition (SI) conditions, one spark plug was mounted at the center of the cylinder head.
Technical Paper

Gas Dynamics of Spark-Ignited Pre-Chamber Assisted Engine: PIV Study

2022-08-30
2022-01-1047
In recent years lean-burn technologies have acquired center stage in engine research due to stringent emission norms. Among such technologies, pre-chamber assisted combustion (PCC) has gained much attention for its ability to allow ultra-lean engine operation (λ > 2). The spark-ignited pre-chambers engines allow such lean operation by inducing a strong charge stratification, enhancing turbulence generation, and multipoint ignition. Adding a pre-chamber igniter to the engine alters the in-cylinder flow fields as mass is exchanged between the pre-chamber and the main chamber. This study reports the main chamber flow fields of methane fuelled heavy-duty optical engine fitted with a narrow throat active prechamber. Particle image velocimetry (PIV) at 10 Hz is performed from the side view using TiO2 particle seeding.
Journal Article

Jet Characteristics of a Narrow Throat Pre-Chamber and Influence on the Main-Chamber Combustion

2022-08-30
2022-01-1006
Lean combustion is one of the most applied methods to increase engine efficiency and maintain a good trade-off with engine emissions. The pre-chamber combustion (PCC) is one of the most promising combustion concepts to extend the lean operating limits of the engine. The Narrow throat pre-chamber has shown better lean limit extension compared to other ignition sources. The pre-chamber jets and the main-chamber combustion were studied in a Heavy-Duty optical engine using methane fuel. The tested conditions covered global excess air ratios (λ), between 1.9 to 2.3. The combustion process was recorded using three collection systems: (a) Natural Flame Luminosity (NFL) with a temporal resolution of 0.1 CAD; (b) OH* Chemiluminescence, and (c) CH* Chemiluminescence with a temporal resolution of 0.2 CAD for both. The propagating velocity of the reacting jets was studied using Combustion Image Velocimetry (CIV) based on bottom view images of the main chamber.
Technical Paper

Optical Diagnostics of Isobaric and Conventional Diesel Combustion in a Heavy-Duty Diesel Engine

2022-03-29
2022-01-0418
Compared to conventional diesel combustion (CDC), isobaric combustion can achieve higher thermal efficiency while lowering heat transfer losses and nitrogen oxides (NOx). However, isobaric combustion suffers from higher soot emissions. While the aforementioned trends are well established, there is limited literature about the high-temperature reaction zones, the liquid-phase penetration distance, and the flame tip propagation velocity of isobaric combustion. In the present study, the line-of-sight integrated imaging of Mie-scattering, combustion luminosity, and CH* chemiluminescence were conducted in an optically accessible single-cylinder heavy-duty diesel engine. The engine was equipped with a flat-bowl-shaped optical piston to allow bottom-view imaging of the combustion chamber. The experiments were conducted using n-heptane fuel for CDC and isobaric combustion modes.
Journal Article

Visualization of Pre-Chamber Combustion and Main Chamber Jets with a Narrow Throat Pre-Chamber

2022-03-29
2022-01-0475
Pre-chamber combustion (PCC) has re-emerged in recent last years as a potential solution to help to decarbonize the transport sector with its improved engine efficiency as well as providing lower emissions. Research into the combustion process inside the pre-chamber is still a challenge due to the high pressure and temperatures, the geometrical restrictions, and the short combustion durations. Some fundamental studies in constant volume combustion chambers (CVCC) at low and medium working pressures have shown the complexity of the process and the influence of high pressures on the turbulence levels. In this study, the pre-chamber combustion process was investigated by combustion visualization in an optically-accessible pre-chamber under engine relevant conditions and linked with the jet emergence inside the main chamber. The pre-chamber geometry has a narrow-throat. The total nozzle area is distributed in two six-hole rows of nozzle holes.
Technical Paper

Using Multiple Ignition Sites and Pressure Sensing Devices to Determine the Effect of Air-Fuel Equivalence Ratio on the Morphology of Knocking Combustion

2022-03-29
2022-01-0433
In spark-ignition combustion, knocking combustion inherently presents an interaction between the main flame front and end gas autoignition. Conventionally, it generates a high amplitude pressure wave traveling across the chamber that can be responsible for reducing the performance of the engine, and can cause heavy damage to engine components. In order to study the phenomenon in a controllable way, experiments were performed on a specialized single-cylinder research engine fitted with a liner equipped with four equi-spaced spark plugs in the side so as to propagate various flame topologies from those locations, and hence achieve more controlled knock events. In addition, six pressure transducers were employed at distinct locations to precisely record details of the autoignition event by monitoring the pressure oscillations, and with them the combustion characteristics and knock intensity.
Technical Paper

Performance Analysis and In-Cylinder Visualization of Conventional Diesel and Isobaric Combustion in an Optical Diesel Engine

2021-09-05
2021-24-0040
Compared to conventional diesel combustion (CDC), isobaric combustion can achieve a similar or higher indicated efficiency, lower heat transfer losses, reduced nitrogen oxides (NOx) emissions; however, with a penalty of soot emissions. While the engine performance and exhaust emissions of isobaric combustion are well known, the overall flame development, in particular, the flow-field details within the flames are unclear. In this study, the performance analysis of CDC and two isobaric combustion cases was conducted, followed by high-speed imaging of Mie-scattering and soot luminosity in an optically accessible, single-cylinder heavy-duty diesel engine. From the soot luminosity imaging, qualitative flow-fields were obtained using flame image velocimetry (FIV). The peak motoring pressure (PMP) and peak cylinder pressure (PCP) of CDC are kept fixed at 50 and 70 bar, respectively.
Technical Paper

Flow-Field Analysis of Isobaric Combustion Using Multiple Injectors in an Optical Accessible Diesel Engine

2021-09-05
2021-24-0042
Isobaric combustion has shown the potential of improving engine efficiency by lowering the heat transfer losses. Previous studies have achieved isobaric combustion through multiple injections from a single central injector, controlling injection timing and duration of the injection. In this study, we employed three injectors, i.e. one centrally mounted (C) on the cylinder head and two side-injectors (S), slant-mounted on cylinder head protruding their nozzle tip near piston-bowl to achieve the isobaric combustion. This study visualized the flame development of isobaric combustion, linking flow-field details to the observed trends in engine efficiency and soot emissions. The experiments were conducted in an optically accessible single-cylinder heavy-duty diesel engine using n-heptane as fuel. Isobaric combustion, with a 50 bar peak pressure, was achieved with three different injection strategies, i.e. (C+S), (S+C), and (S+S).
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

Effects of Multiple Injectors on Spray Characteristics and Efficiency in Internal Combustion Engines

2021-04-06
2021-01-0501
High-pressure internal combustion engines promise high efficiency, but a proper injection strategy to minimize heat losses and pollutant emissions remain a challenge. Previous studies have concluded that two injectors, placed at the piston bowl's rim, simultaneously improve the mixing and reduce the heat losses. The two-injector configuration further improves air utilization while keeping hot zones away from the cylinder walls. This study investigates how the two-injector concept delivers even higher efficiency by providing additional control of spray -and injection angles. Three-dimensional Reynolds-averaged Navier-Stokes simulations examined several umbrella angles, spray-to-spray angles, and injection orientations by comparing the two-injector cases with a reference one-injector case. The study focused on heat transfer reduction, where the two-injector approach reduces the heat transfer losses by up to 14.3 % compared to the reference case.
Technical Paper

A Computational Investigation of Fuel Enrichment in the Pre-Chamber on the Ignition of the Main Chamber Charge

2021-04-06
2021-01-0523
Pre-chamber combustion (PCC) engines allow extending the lean limit of operation compared to common SI engines, thus being a candidate concept for the future clean transportation targets. To understand the fundamental mechanisms of the main chamber charge ignition in PCC engines, the effects of the composition in the pre-chamber were investigated numerically. A well-stirred reactor combustion model coupled with a methane oxidation mechanism reduced from GRI 3.0 was used. An open-cycle simulation was run with initialization at exhaust valve opening (EVO). For posterior simulations, the initial flow field was attained by mapping the field variables obtained from the full cycle simulation. The entire simulation domain (pre-chamber and main chamber) global excess air ratio (λ) was set to 1.3.
Technical Paper

Optical Diagnostics of Pre-Chamber Combustion with Flat and Bowl-In Piston Combustion Chamber

2021-04-06
2021-01-0528
Pre-chamber Combustion (PCC) extends the lean operation limit operation of spark ignition (SI) engines, thus it has been of interest for researchers as a pathway for increased efficiency and reduced emissions. Optical diagnostic techniques are essential to understand the combustion process, but the engine components such as the piston geometry, are often different from real engines to maximize the optical access. In this study, ignition and subsequent main chamber combustion are compared in an optically accessible PCC engine equipped with a “flat” and a real engine-like “bowl” piston geometry. An active fueled narrow throat pre-chamber was used as the ignition source of the charge in the main-chamber, and both chambers were fueled with methane. Three pre-chamber fuel effective mean pressure (FuelMEP) ratios (PCFR) namely 6%, 9% and 11% of the total amount of fuel were tested at two global excess air ratios (λ) at values of 1.8 and 2.0.
Technical Paper

A Simulation Study to Understand the Efficiency Analysis of Multiple Injectors for the Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0444
Heavy-duty vehicles face increasing demands of emission regulations. Reduced carbon-dioxide (CO2) emission targets motivate decreased fuel consumption for fossil fuel engines. Increased engine efficiency contributes to lower fuel consumption and can be achieved by lower heat transfer, friction and exhaust losses. The double compression expansion engine (DCEE) concept achieves higher efficiency, as it utilizes a split-cycle approach to increase the in-cylinder pressure and recover the normally wasted exhaust energy. However, the DCEE concept suffers heat losses from the high-pressure approach. This study utilizes up to three injectors to reduce the wall-gas temperature gradient rendering lower convective heat losses. The injector configuration consists of a standard central injector and two side-injectors placed at the rim of the bowl. An increased distance from side-injector to the wall delivered lower heat losses by centralizing hot gases in the combustion chamber.
Technical Paper

Reed Valve Evaluation and Selection for the Compressor Cylinder in Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0397
This paper shows the potential benefits of implementing four configurations of reed valves at the inlet of the two-stroke compressor used in the double compression expansion engine (DCEE) concept or 8-stroke engines over the conventional poppet valves used in 4-stroke internal combustion engines. To model the reed and poppet valve configurations, the discharge coefficient was estimated from RANS computational fluid dynamics simulations using ANSYS Fluent 2020 R1, with a pressure difference up to 0.099 bar. The calculated discharge coefficients for each case were then fed in a zero-one dimension model using GT-Power to understand the valve performance i.e. the volumetric efficiency of the compressor cylinder and the mean indicated pressure during the compression process at 1200 rpm.
X