Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Oil Aerosol Emission Optimization Using Deflectors in Turbo Charger Oil Drain Circuit

2024-01-16
2024-26-0047
Closed crankcase ventilation prevent harmful gases from entering atmosphere thereby reducing hydrocarbon emissions. Ventilation system usually carries blowby gases along with oil mist generated from Engine to Air intake system. Major sources of blowby occurs from leak in combustion chamber through piston rings, leakage from turbocharger shafts & leakage from valve guides. Oil mist carried by these blowby gases gets separated using separation media before passing to Air Intake. Fleece separation media has high separation efficiency with lower pressure loss for oil aerosol particles having size above 10 microns. However, efficiency of fleece media drops drastically if size of aerosol particles are below 10 microns. Aerosol mist of lower particle size (>10 microns) generally forms due to flash boiling on piston under crown area and from shafts of turbo charger due to high speeds combined with elevated temperatures. High power density diesel engine is taken for our study.
Technical Paper

A Mechanism to Maintain Negative Crankcase Pressure in Turbocharged Gas Engine to Reduce Particulate Number to Meet Euro-VI Emission Regulation

2024-01-16
2024-26-0145
Emissions regulation continually drives the automotive industry to innovate and develop. This pushes to introduce mechanism to maintain negative crankcase pressure in gas engine to meet this changing regulation. The way a turbocharger is used, to meet engine performance, can impact the pressure balance over the compressor and turbine end seals. This pressure difference can allow oil to leak through turbocharger seals. In normal engine operating condition the pressure in the turbocharger end housings is higher than the bearing housing and oil/gas flows into the bearing housing, through the oil drain to the crankcase. Under certain operating conditions, such as low idle and motoring, this pressure difference can be reversed with a higher bearing housing pressure than the pressure behind the turbine wheel.
Technical Paper

Development of Medium Duty H2 ICE for ON & OFF Highway Application

2024-01-16
2024-26-0170
Throughout the world the efforts are being carried out to reduce the GHG emissions from transportation sector. As Volvo Group is a signatory of SBTi and having internal target of carbon neutrality by 2040, we have intensified & also diversified our R&D efforts to develop powertrains of the future having mix of conventional, various alternate fuels, electric etc. There will not be a unique solution or strategy suiting for all the markets in the world. Each market will have its own motivation & factors which OEMs need to consider while deciding the short term, midterm & long-term strategy for powertrain technology. Accordingly, OEMs must be ready with product mix suitable for all global markets. This paper will talk about the efforts taken and lessons learned during development of Hydrogen fuelled IC Engine. We used 8L Diesel IC engine as a base to convert it to Hydrogen powered IC engine, in a retrofit spirit, so that with minimum changes we could make the working prototype.
Technical Paper

Clarification of Fuel and Oil Flow Behavior Around the Piston Rings of Internal Combustion Engines

2023-09-29
2023-32-0047
The mechanism of lubricant dilution by post injection fuel in a diesel engine was investigated. The operating conditions of the engine were changed, and oil was sampled from each part of the piston and the crankcase, and the dilution ratio was analyzed. Also, photochromism was used to visualize the oil and fuel flow. Dilution ratios obtained from oil sampling and photochromism showed the same tendency.
Technical Paper

Clarification of Fuel and Oil Flow Behavior Around the Piston Rings of Internal Combustion Engines – Simultaneous analysis of oil flow behavior and oil emissions during transient operation

2023-09-29
2023-32-0045
Future demands for modern emission free drivetrains using hydrogen or liquid e-fuels also necessitate a fundamental reduction in oil emissions. Entry of lubrication oil into the combustion chamber can lead to pre-combustion phenomena (LSPI) in downsizing or hydrogen engines and is a cause of particle emissions, which play a significant role especially if fuel related particle emissions are already low. A fundamental understanding of the oil film behavior on the piston assembly and cylinder liner surface are crucial to avoid oil ingress into the combustion chamber. The processes involved take place mainly around the piston group. In particular, the area of the piston rings with the prevailing pressure and temperature conditions as well as the component geometries has a high influence on the exchange of media between the crankcase and combustion chamber. The objective of this paper is to increase the understanding of the processes leading to oil ingress into the combustion chamber.
Technical Paper

High Performance and Near Zero Emissions 2-Stroke H2 Engine

2023-08-28
2023-24-0068
The paper presents a preliminary study on a virtual 2-stroke 3-cylinder 0.9 L DI SI supercharged engine running on Hydrogen (H2), able to meet both high performance targets and ultra-low emissions limits (NOx<20 ppm). Combustion is similar to a conventional 4-stroke H2 DI engine, while the design of the cylinder and the actuation law of both intake and exhaust valves are specifically optimized for the 2-stroke cycle. In comparison to a more conventional 2-stroke loop scavenged engine, with piston-controlled ports, the use of poppet valves enables a more flexible control of the gas exchange process and to maintain the same design of a 4-stroke engine for pistons, cylinders block, crankcase and lubrication system. On the other hand, it is more difficult to avoid the short-circuit of the fresh charge, while permeability of the valves becomes quite critical at high engine speed.
Technical Paper

Cast Iron Cylinder Blocks: Same Weight as Aluminum; Lower Emissions

2023-04-11
2023-01-0439
In comparison to aluminum, Compacted Graphite Iron (CGI) iron has superior mechanical properties, enables the use of parent bore running surfaces and fracture split main bearings, and provides advantageous NVH, package size, cost, and manufacturing CO2 profiles. Despite these advantages, aluminum blocks have leveraged density, and therefore weight, differentials to make considerable gains in the small, in-line passenger vehicle sector over the last 30 years. In order to demonstrate the potential benefits of CGI for small, in-line spark-ignition engines, the present study converted the cylinder block of a series production 1.2 litre three-cylinder engine from aluminum to CGI. Leveraging a novel design concept, with the running surface and load path constructed from high-strength CGI and the outer crankcase housing fabricated from durable, lightweight plastic, the assembled cylinder block achieved the same weight as the original aluminum block.
Technical Paper

Experimental Investigation on the Wear and Tear Characteristics of Chrome and Moly Coated Piston Rings Used in Automobile Engine Application

2022-12-23
2022-28-0530
A compression ring may be a metal seal between the pistons and cylinder walls in a combustion chamber of Internal combustion engine, the important function of the compression ring is to cover the combustion area in order that there’s no movement of gases from the engine chamber to the crank case area. Supportive heat transmission from the piston to the cylinder wall helps in achieving the specified power exerted at the piston crown and efficiency of an engine. This compression ring is continuously subjected to friction and wear. To overcome or decrease the wear and tear it’s coated with certain materials which rises the lifetime of the ring. In this project we are using Chrome and Moly coated piston rings. The Coating thickness were measured using Image Analyzer. The Pin-on-Disk (POD) testing machine used to find the wear and tear rate of Chrome and Moly coated piston rings.
Journal Article

Propeller and Dynamometer Testing of an Additive Manufactured Small Internal Combustion Engine

2022-04-04
Abstract As the advancement of metal additive manufacturing (AM) technology persists, so will the expansion of its capabilities and applications. In particular, the automotive industry can benefit from the advantages provided by AM, such as flexibility in design and customized products. In this avenue, one potential application of AM is in internal combustion engines (ICEs). As a first step, this effort explores the feasibility of using AM to produce working ICE components for an air-cooled engine. The cylinder head and crankcase of an 11 cm3 displacement volume Saito FG-11 engine were the components identified for metal AM. They were manufactured through Laser Powder Bed Fusion (LBPF) and post machined to achieve the necessary tolerances. Engine testing encompassed both propeller and dynamometer setups with corresponding data collection to measure and compare engine performance.
Technical Paper

Multidimensional CFD Studies of Oil Drawdown in an i-4 Engine

2022-03-29
2022-01-0397
A computational study based on unsteady Reynolds-Averaged-Navier-Stokes that resolves the gas-liquid interface was performed to examine the unsteady multiphase flow in a 4 cylinder Inline (i-4) engine. In this study, the rotating motion of the crankshaft and reciprocating motion of the pistons were accounted for to accurately predict the oil distribution in various parts of the engine. Three rotational speeds of the crankshaft have been examined: 1000, 2800, and 4000 rpm. Of particular interest is to examine the mechanisms governing the process of oil drawdown from the engine head into the case. The oil distributions in other parts of the engine have also been investigated to understand the overall crankcase breathing process. Results obtained show the drawdown of oil from the head into the case to be strongly dependent on the venting strategy for the foul air going out of the engine through the PCV system.
Technical Paper

Conceptual Design Proposal for Adapting D-Cycle Technology in Agricultural Tractor Engine

2022-03-29
2022-01-0600
This paper reviews application of D-Cycle technology to compact tractor diesel engine for improving efficiency & power. The study considers design challenges that are presented for accommodating D-Cycle technology in engine. The paper also covers resolving those challenges with established technical solutions. The study focuses on modifying conventional compact 4-stroke diesel engine with the intention of keeping design changes to a minimum level for incorporating differential stroke technology. Designing of vertically splitting lightweight piston crown which can be smoothly engaged and separated from main piston body without any impact, stem rod which connects piston crown with rocker arm, split connecting rod and rocker arm which is actuated by extra actuating camshaft in addition of present valvetrain camshaft, are covered. Lubrication of additional actuating camshaft is done by extending existing oil galleries.
Standard

Power Cylinder Blow-by: Blow-by Mechanisms

2022-02-15
CURRENT
J2797_202202
This document covers the mechanisms associated with the power cylinder system which might affect blow-by. It will not discuss in detail the blow-by mechanisms from other systems or engine subsystems.
Technical Paper

On the Potential of Transfer Port Injection Strategies for a Two-Stroke Engine

2022-01-09
2022-32-0057
The main drawback of an in-cylinder Low Pressure Direct Injection (LPDI) in a two-stroke engine is the difficulty of achieving a satisfactory vaporization level in low load conditions. The liquid droplets are characterized by large diameters and, when the temperature level and the velocity of the scavenging flow field are low, the time needed for the droplet vaporization and the homogenization with fresh air becomes too long to guarantee a suitable mixture formation. A transfer port injection allows a higher flexibility, due to the possibility of performing a mixed injection either directly in the cylinder or indirectly in the crank case, depending on the load request or engine speed. Also, an even lower injection pressure can be adopted with respect to an in-cylinder LPDI injection, which is relevant in case of lightweight and low power applications. On the other hand, the time available for the direct in-cylinder injection is limited to the scavenge phase.
Journal Article

Laser Interferometry to Investigate the Strain and Stress State of Details and Units of Heat Engines

2021-10-08
Abstract The article is devoted to laser interferometry technology for investigating the strain and stress state (SSS) of heat engine details and units. It is an efficient alternative to traditional technologies based on using strain gauges. It has been shown that the use of traditional technologies to experimentally investigate the SSS of heat engine complex details when using the strain gauges requires a significant amount of research and time. Thus, deploying physical effects previously not used for solving similar problems is a perspective research direction that includes laser interferometry technology. The article deals with its use to experimentally investigate the SSS of complex details, such as a crankcase block of an internal combustion engine (ICE). Laser interferometry research is based on the use of holographic interferometry, speckle photography, electronic speckle pattern interferometry, and modern methods of computer simulation.
Technical Paper

Investigation and Experimental Based Solution to Address High Particulate Matter Contributed from Open Crank Case Ventilation System in Automotive Diesel Engines to Meet Stringent Emission Norms BS6

2021-09-22
2021-26-0188
As part of transformation from BS4 to BS6 automobile emission standard in India, engine manufactures are focusing on continuous development of emission control technologies and suitable strategies. Exhaust tail pipe emission and Crankcase emission are added together to meet the regulation acceptable limit. The crankcase emissions contribute substantially to the total Particulate Matter (PM) emitted from an engine. Hence there is a need of design and development of suitable Crankcase ventilation system. This paper presents investigation of high PM contributed from Open Crankcase ventilation (OCV) system in Diesel engine and experiment based solutions.
Journal Article

Effect of CCV and OCV System in Heavy Duty CNG Engine on the Particulate Emissions

2021-09-22
2021-26-0116
Due to increasing pollution and climatic cries, newly implemented BS-VI emission norms in India have stressed the reduction of emission. For which many automobiles have been shifted to alternate fuels like CNG. Also, the Indian Automotive market is fuel economy cautious. This challenges to focus on improving fuel economy but without an increase in emissions. Crankcase blow-by gases can be an important source of particulate emission as well as other regulated and unregulated emissions. They can also contribute to the loss of lubricating oil and fouling of surface and engine components. Closed Crankcase Ventilation (CCV) or Open Crankcase Ventilation (OCV) is capable to reduce particulate emissions by removing the oil mist that is caused mainly due to blow-by in the combustion chamber. This paperwork is focused, to measure the effectiveness of the CCV and OCV systems on the engine-out emissions, primarily on the particulate emissions.
Technical Paper

Simulation Study of a Turbocharged Two-Stroke Single Cylinder 425cc SI Engine

2021-09-05
2021-24-0003
An afterburner-assisted turbocharged single-cylinder 425 cc two-stroke SI-engine is described in this simulation study. This engine is intended as a Backup Range Extender (REX) application for heavy-duty battery electric vehicles (BEV) when external electric charging is unavailable. The 425 cc engine is an upscaled version of a 125 cc port-injected engine [26] which demonstrated that the selected technology could provide a specific power level of 400 kW/L and the desired 150 kW in a heavy duty BEV application. The 425 cc single cylinder two-stroke engine is an existing engine as one half of a 850 cc snowmobile engine. This simulation study includes upscaling of the swept volume, impact on engine speed and gas exchange properties. In the same way as for the 125cc engine [26], the exhaust gases reaches the turbine through a tuned exhaust pipe and an afterburner or oxidation catalyst.
Technical Paper

Innovative Approach of Reducing Vibration Stress in High Pressure Fuel Injection Pipe and Fuel Injector Using Vibration Dampers in Two Cylinder Diesel Engine

2021-04-06
2021-01-0686
Design and development of high-pressure pipe involves number of design validation plans for robust design in diesel engine. The fundamental behavior of two-cylinder diesel engine with parallel stroke involves high vibration which generates stress on components mounted on crankcase resulting into earlier fatigue failure. In this paper, the innovative approach of using optimized design of vibration damper for resolving high vibration stress concerns in fuel system is discussed. The vibration dampers were designed meeting both performance and durability aspects in two-cylinder diesel engine applicable for both passenger and commercial vehicle. This paper highlights the design approach involving experimental stress measurements and design optimization based on part development feasibility.
Journal Article

Quantitative Analysis of Gasoline Direct Injection Engine Emissions for the First 5 Firing Cycles of Cold Start

2021-04-06
2021-01-0536
A series of cold start experiments using a 2.0 liter gasoline turbocharged direct injection (GTDI) engine with custom controls and calibration were carried out using gasoline and iso-pentane fuels, to obtain the cold start emissions profiles for the first 5 firing cycles at an ambient temperature of 22°C. The exhaust gases, both emitted during the cold start firing and emitted during the cranking process right after the firing, were captured, and unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start were analyzed and quantified. The HCs emitted during gasoline-fueled cold starts was found to reduce significantly as the engine cycle increased, while CO and CO2 emissions were found to stay consistent for each cycle. Crankcase ventilation into the intake manifold through the positive-crankcase ventilation (PCV) valve system was found to have little effect on the emissions results.
X