Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Determining the State Of Health [SOH] of Li Ion cell

2019-11-21
2019-28-2579
“NuGen Mobility Summit-2019” Paper Title : Determining the State Of Health [SOH] of Li Ion cell Authors: Sushant Mutagekar, Ashok Jhunjhunwala, Prabhjot Kaur Objective Cells age with life. This aging is dependant on various factors like charging/discharging rates, DOD of operation and operating temperature. As the cell ages it undergoes power fade (ability to deliver required power at particular State of Charge [SOC]) and capacity fade (the charge storage capacity of cell). In an Electric Vehicle it is important to know what power shall be demanded from a battery irrespective of what its current SOC is and number of cycles it has undergone. With minimal accuracy and less computational power, it is difficult for a Battery Management System [BMS] to accurately determine SOH; the paper proposes a a precise model that may help.
Technical Paper

Design improvements in advanced automotive batteries using AI

2019-11-21
2019-28-2505
Introduction: The advent of electric mobility is changing the conventional mobility techniques and with this comes challenges to improve the performance of battery to optimize power consumption in electric vehicles. Objective: This paper would focus on the optimization of battery performance incoherent with vehicle power consumption behavior in terms of efficiency using decision-making ability based on given input signals
Technical Paper

C123 Methodology for concept design of the Chassis Frame

2019-11-21
2019-28-2534
Objective This paper explores the usage of Altair simulation driven concept process, C123 for developing the chassis frame of the SUV along with Multidisciplinary optimisation tool. C123 process is useful for strategic & systematic usage of optimisation to generate design alternatives, trade-off information, best balanced designs, design sensitivities, to actively support the concept development process on daily basis. Methodology C123 is used for developing initial concept design of the chassis frame of the SUV. C123 process is independent of vehicle architectures, manufacture process (e.g. extrusions, sheet metal) & material selection (e.g. metals, composites, mixed etc.) and platform sharing strategy. C1 process is used for identification of optimum Structural Layout, C2 is for rapid optimum Sizing of idealized Sections, C3 is used for detailed optimum Sizing of Manufacturable Sections. Automatic process is used for handling pre and post processing process very efficiently.
Technical Paper

Development of Electric Vehicle Controller by using MBD approach

2019-11-21
2019-28-2494
The automobile industry is moving towards electrification of Vehicle to remove the exhaust gas emissions. A project was undertaken to develop Electric Vehicle control system from concept to vehicle trials in less than a year. The complete development cycle of an electronic controller required to be compressed to prepare mule electric vehicle within timeline. Agile methodology has been used for this project instead of waterfall as other control systems were in developing stage; system requirements were changing frequently. This paper presents the electric vehicle control unit development with agile methodology using model based development (MBD) in MATLAB and Simulink environment. The project flow consists of major phases like design of electrical architecture, system requirements specification, selection and setting up the simulation platform, EVCU strategy development, testing on Model in Loop (MIL)/ Hardware in Loop (HIL), vehicle trials.
Technical Paper

Powertrain topologies for 2 wheelers : From ICE to Electrification

2019-11-21
2019-28-2480
As Battery cost is expected to see a Downward trend, Electrification of Powertrain in general is expected to pick up and 2wheeler Market is foreseen to be the Flag bearer in this race towards Electrification. In this paper, we would like to emphasize on the Journey of 2wheelers from Conventional Internal combustion Engine to Electrified Powertrains which we foresee in the future. Methodology: EV - Analysis of OEM strategies and upcoming trends in connectivity and electrification. Estimation of current market size of 2Wheeler and segmentation based on different personas. Building survey data based personas around ownership patterns for electric 2Wheelers. Mapping consumer decision process for electric 2Wheelers. Analyse the decision influencers and role of influencers in decision making process. Hybrid - Analysis of different hybrid topologies. Feasibility study via simulation and focus group assessments to evaluate the design. PoC will also be tried to validate the concept.
Technical Paper

Development of PCX Electric

2019-11-21
2019-28-2470
We developed the electric motorcycle model “PCX ELECTRIC” that satisfies usability under the traffic environment in apan and ASEAN’s motorcycle sales major countries. The PCX ELECTRIC features easily removable battery packs, which practically helps eliminate the waiting time associated with charging the battery. The compactly designed EV system, which is efficiently packaged in the vehicle, uses two removable 48 V battery packs connected in series to realize a 96 V system suitable for driving the electric motorcycle. The EV system mounted on the body of the 2018 PCX achieves a motor power of 4.2 kW, top speed of 60 km/h, and cruising range of 41 km (at a steady 60 km/h). In addition, we developed a highly-convenient battery attaching system that enables fixing of the battery to the vehicle body and engaging of the connectors with a single action operation.
Technical Paper

Improved Performance of Electric Vehicles with Supercapacitor

2019-11-21
2019-28-2468
Background: Due to Environmental concern worldwide, Mobility is under pressure to shift gear from fossil fuel to Electric. This is Rebirth of Electric Mobility is with state’s initiative, but it is facing bigger challenges than the 1900s era. Fossil fuel vehicles have already carved the benchmark on ease of range per charge, and time of charge (filling of fossil fuel), which needs to be at least matched by Electric Vehicles. The success of electric vehicles will not only be driven by state policy but also by performance and Economic Viability. While at this introduction level state is trying best to offset cost by way of subsidy/tax-sops offering. So, in clear terms “Performance of Electric Vehicles” need to be addressed and enhanced to put them in main stream in place of fossil fuel vehicles. In last 100 years there has been significant technological development in Motors, and Energy Storage, which is base of Electric mobility.
Technical Paper

Electric hybrid system Architecture & Functional component selection criteria for application based Off-Highway segment

2019-11-21
2019-28-2495
Hybridization continues to be growing trend in vehicular applications. Current study shows a holistic system approach for the design & integration of the powertrain in Off-Highway tractor applications. It includes study & benchmarking of system architecture of an all-electric and diesel-electric drive systems as per application requirement. Further comprehensive study was done on functional components for an electric powertrain, which includes electric drives, batteries & controllers. Selection & design of these components was studied & component selection approach was developed for typical Off-Highway tractor application. Current study was divided into three parts. 1.Study of different Off-Highway tractor applications & selection of all-electric, series & parallel hybrid architectures as per application requirement.
Technical Paper

IOT based Battery Diagnostics for Battery swapping station.

2019-11-21
2019-28-2441
An electric vehicle is significantly promoted by government and industry to reduce carbon footprint and effective energy management. IC engines get replaced by the battery and diagnosis parameters of engine also need to replace with battery parameters. Main objective is to provide analysis of battery to battery swapping stations. State of charge and state of health plays important role in battery management system and vehicle performance. State of health estimation has many techniques, but large equipment needs for it and become costlier and bulkier. Batteries internal resistance increases as it gets degraded, proposed technique based on adaptive method which didn’t need any extra hardware, this technique identifies the health based on degraded capacity. Cloud platform is used to store the data and process it and display to users and swapping station. Status updating unit located on battery is connected to cloud and it gives complete analysis of battery to vehicle users.
Technical Paper

Determine Thermal Fatigue Requirements for PEPS Antenna Copper Wire over Vehicle Lifetime with defined Reliability Requirements.

2019-11-21
2019-28-2582
Reliability states the degree to which the result of a measurement, calculation, or specification can be depended on to be accurate. And, tests according to GMW specifications represents a minimum of 15 years of vehicle life time with defined Reliability and Confidence level. In this work, actual number of thermal cycles for Thermal Fatigue tests (Thermal Shock and Power Temperature Cycle) are calculated for Copper Wire whose Coffin Manson exponent is 5. Overstressing the PEPS Antenna under thermal fatigue requirement (defined number of thermal cycles based on Reliability and Confidence requirements) will lead to broken Copper wire which will result in component’s functional failure and thus impossible to continue reliability testing. The objective of this paper is to determine thermal fatigue requirements for Antenna’s Copper wire whose Coffin Manson exponent is 5.
Technical Paper

Electric Vehicle Thermal Management System For Hot Climate Regions

2019-11-21
2019-28-2507
ELECTRIC VEHICLE THERMAL MANAGEMENT SYSTEM FOR HOT CLIMATE REGIONS Rana Tarun*, Yamamoto Yuji, Kumar Ritesh, Bhagatkar Shubhada Pranav Vikas India Private Limited, India Key Words Electric Vehicles (EV); Battery Thermal Management System (BTMS); COP; Electric Vehicle Thermal Management System (EVTMS); BTMS and HVAC System Integration; Thermal System Performance Comparison; Active Liquid Cooling; EV Battery Cooling Research and/or Engineering Questions/Objective Electric Vehicles is the need of time to limit global warming and it is in application at a wide scale in colder or mild climate regions where ambient temperature is limited to mild or moderate level. Its application (Heat pump, CO2) is constrained to cold climates only due to securing better COP for heating function, sacrificing cooling COP of the existing system when operated in Hot Climate Regions, thus limiting its application to nearly half of the automotive user-base.
Technical Paper

Optimization of the critical parameters affecting the fuel lid performance

2019-11-21
2019-28-2413
Fuel lid is one of the parts which are mostly operated mechanically by the end user while filling the fuel. Therefore part design should be done in such a manner that it can be operated smoothly without any hassles. The conventional steel fuel filler doors are of two types: Three-piece type fuel filler doors also known as the dog-leg type and two-piece type fuel filler doors also known as the butterfly type. Both types of fuel filler doors have a pin that acts as a rotational hinge axis about which the fuel filler door opens and closes. Depending on the styling and shape of the side body outer, fuel lid type is decided. In the current study, dog-leg type fuel lid is considered. The factors that primarily affect the opening-closing performance are the weight of fuel lid, hinge axis, and the friction at the hinge area. The orientation of the hinge axis is derived from the profile of the side body outer panel. The fuel lid weight and hinge axis are decided in the initial design stage.
Technical Paper

Real world energy efficiency calculation for e-Rickshaws - A Comparative study (Lead Acid Vs Lithium Ion Battery vehicles)

2019-11-21
2019-28-2486
E-Rickshaws are receiving considerable attention as a sustainable passenger transportation in Indian mobility space. As per the recent reports, more than 1.5 million e-rickshaws are currently operating in the country. These are quieter, cleaner and convenient mode for last mile connectivity and are typically used for short distance (<10Km) commutation. For owners, these vehicles offer value in terms of affordability and operating cost. Challenge for manufacturers is to design a vehicle which balances the requirements of both passengers and owners. Energy efficiency (Energy consumption per Km) influences such critical decisions. There is always a difference between the catalog value and actual on-road Energy efficiency figures and therefore it's important to really understand owner requirements w.r.t. market where vehicle is going to be operated.
Technical Paper

Estimating drive cycle for E-rickshaws using real world operating scenarios and for overall powertrain improvements.

2019-11-21
2019-28-2497
E-Rickshaws are popular and convenient mode of transportation for last mile connectivity and are typically used for short distance(<10Km) commute. As per recent reports there are more than 1.5million e-rickshaws plying on Indian roads and approx. 10,000 vehicles are adding every month. Owners of these vehicles are inclined towards the overall range these vehicles can give on a single charge. Range can be improved by using efficient powertrain. Range can also be improved by optimized Battery Management systems and Controllers. Though there are certain evaluation criteria (such as curtailed Indian Drive Cycles) which can be used for efficiency estimations, manufactures are more interested in extending the range in real world scenarios. Hence, availability of real-world drive cycle is imperative. Through this paper, we have attempted to derive a typical drive cycle by collecting road data of various types of e-Rickshaws under different environment conditions.
X