Refine Your Search

Topic

Search Results

Standard

Contamination Classification for Hydraulic Fluids

2022-11-22
CURRENT
AS4059G
This SAE Aerospace Standard (AS) defines contamination classes and levels for particulate contamination of hydraulic fluids and includes methods of reporting related data (Appendix A).
Standard

Liquid Filter Ratings, Parameters and Tests

2021-04-29
CURRENT
AIR887C
This SAE Aerospace Information Report (AIR) identifies and explains the meaning of various ratings and terms used to describe the physical characteristics of liquid filter elements. The significance of various filter parameters is discussed. In addition, a number of filter test methods are briefly described. This AIR and the data presented are only applicable where the system liquid wets the filter elements.
Standard

Degradation Limits of MIL-PRF-5606, MIL-PRF-83282, and MIL-PRF-87257 Hydraulic Fluids Used in Hydraulic Test Stands

2020-10-14
CURRENT
AIR810E
This SAE Aerospace Information Report (AIR) presents data on normally accepted changes in physical properties and contamination levels for MIL-PRF-5606, MIL-PRF-83282, and MIL-PRF-87257 hydraulic fluids used in hydraulic test stands. This information is of importance to all users of hydraulic test stands to assure the performance data obtained on these test stands for specific components will not be adversely affected by excessive changes in fluid properties or contamination levels.
Standard

Filter Element Cleaning Methods

2020-10-09
CURRENT
AIR787B
This SAE Aerospace Information Report (AIR) provides technical information to assist the development of specific cleaning methods for those filter elements which are designated as "cleanable" and cannot be cleaned by simple and obvious procedures.
Standard

Aerospace Fluid Power - Contamination Classification for Hydraulic Fluids

2020-05-05
HISTORICAL
AS4059F
This SAE Aerospace Standard (AS) defines contamination classes and levels for particulate contamination of hydraulic fluids and includes methods of reporting related data (Appendix A). The contamination levels selected are based on the widely accepted NAS 1638 cleanliness classes. The conversion from NAS 1638 cleanliness class specifications to AS4059 class specifications is defined. The comparison of the NAS 1638 classes to AS4059 classes and levels is provided and are defined and the differences explained (Appendix B). NAS 1638 classes based on weight of particles are not applicable to these classes and are not included. A contamination code has been added to describe the contamination levels of the fluid at the specified particle size ranges.
Standard

Importance of Physical and Chemical Properties of Aircraft Hydraulic Fluids

2019-10-02
CURRENT
AIR81E
This document discusses the relative merits of the physical and chemical properties of hydraulic fluids in relation to the aerospace hydraulic system design, and the related materials compatibility. The discussion in this report applies both to hydrocarbon and phosphate ester based aircraft hydraulic fluids. In some cases, numerical limits are suggested, but, in general, the significance and effect of a property is noted qualitatively.
Standard

Aerospace - Evaluation of Particulate Contamination in Hydraulic Fluid - Membrane Procedure

2018-08-13
CURRENT
ARP4285A
This SAE Aerospace Recommended Practice (ARP) establishes a method for evaluating the particulate matter extracted from the working fluid of a hydraulic system or component using a membrane. The amount of particulate matter deposited on the membrane due to filtering a given quantity of fluid is visually compared against a standard membrane in order to provide an indication of the cleanliness level of the fluid.
Standard

Air in Aircraft Hydraulic Systems

2018-01-19
CURRENT
AIR5829
This SAE Aerospace Information Report (AIR) discusses the forms that air may take in aircraft hydraulic systems. Further, the effects of the various air forms on system operation are addressed. Recommended system design to prevent air effects and maintenance procedures to prevent and remove air are provided. Nitrogen leakage from accumulators is also a source of gas in hydraulic systems and may compose a portion of the “air” in the hydraulic system. The term “air” in this report does not differentiate between a gas composed strictly of normal atmospheric air or one that includes a mixture of additional nitrogen as well. The discussions of the report apply equally with any proportions of atmospheric air and nitrogen in the system.
Standard

Aerospace Microscopic Sizing and Counting of Particulate Contamination for Fluid Power Systems

2016-06-09
CURRENT
ARP598D
This SAE Aerospace Recommended Practice (ARP) defines the materials, apparatus and procedure for sizing and counting of particulate contamination, 5 μm or greater, in hydraulic fluid samples by membrane filtration iwth microscopic counting. It is capable of counting particulate matter in samples withdrawn from fluid power systems as identified by the 12 classes of SAE AS 4059 or NAS 1638 and projected beyond these for the five standard ranges specified and can thus serve as the primary document to determine acceptability. It is also capable of revealing but not measuring evidence of abnormal amount of water, other fluids, fine particulate and other materials, especially fibers and metals. It is applicable to all military, civil, space vehicles and test equipment.
Standard

Importance of Physical and Chemical Properties of Aircraft Hydraulic Fluids

2016-04-20
HISTORICAL
AIR81D
This document discusses the relative merits of the physical and chemical properties of hydraulic fluids in relation to the aerospace hydraulic system design, and the related materials compatibility. The discussion in this report applies both to hydrocarbon and phosphate ester based aircraft hydraulic fluids. In some cases, numerical limits are suggested, but, in general, the significance and effect of a property is noted qualitatively.
Standard

Filter Element Cleaning Methods

2013-10-08
HISTORICAL
AIR787A
This SAE Aerospace Information Report (AIR) provides technical information to assist the development of specific cleaning methods for filter elements. Consideration is limited to filter elements which are designated as "cleanable" (not "disposable"), but which cannot be cleaned by simple and obvious procedures. Cleaning methods developed according to this report should be evaluated by the methods of ARP725. Satisfactory cleaning methods can be developed for most "cleanable" filter elements. Technical or economic feasibility of the cleaning method may be limited, however, by incompatibility of filter-element construction materials, by mechanical weakness or lack of corrosion resistance to withstand repeated or continued cleaning, or by the presence of unusually tenacious contamination. These factors must be considered when selecting approaches to the development of specific methods.
Standard

Aerospace - Chlorinated Solvent Contamination of MIL-H-5606/MIL-H-83282 Vehicle Hydraulic Systems

2013-06-18
CURRENT
AIR4713A
Although there is controversy regarding the chemical form of chlorine and its relation to harmful effects in the hydraulic fluid (i.e., chloride ions versus organic chloro-compounds versus total chlorine in all forms), it is generally agreed that total chlorine content should be measured and controlled. In the near future, the ban on the manufacture of chlorinated solvents, out of concern for depletion of the ozone layer, may in itself diminish or eliminate chlorine contamination related aircraft malfunctions. It is generally accepted that hydraulic fluid contamination should be held to a minimum under all conditions. The benefits of low contamination levels are improved performance, lower maintenance due to lower wear, corrosion and erosion, longer fluid life, longer component life, etc. Contaminants can be classified into two general types: those that are insoluble and those that are soluble in the hydraulic fluid.
Standard

Degradation Limits of Hydrocarbon-Based Hydraulic Fluids, MIL-PRF-5606, MIL-PRF-83282, and MIL-PRF-87257 Used in Hydraulic Test Stands

2013-04-22
HISTORICAL
AIR810D
This SAE Aerospace Information Report (AIR) presents data on normally accepted changes in physical properties and contamination levels for military hydraulic fluids used in hydraulic test stands. This information is of importance to all users of hydraulic test stands to assure the performance data obtained on these test stands for specific components will not be adversely affected by excessive changes in fluid properties or contamination levels. The data pertains to fluids conforming to specifications MIL-PRF-5606, MIL-PRF-83282, and MIL-PRF-87257. The guidelines incorporated in the AIR are the general consensus values of knowledgeable professionals. However, the experience and judgment of engineers and operators responsible for the equipment must be relied upon to determine when the hydraulic fluid is to be replaced.
Standard

Secondary Filters for Fluid System Reliability

2012-09-24
CURRENT
AIR4057B
This SAE Aerospace Information Report (AIR) discusses the design choices and engineering trade-offs available to the system designer in the efficient selection and application of Last-Chance filters in contrast to main or primary system filters.
Standard

Aerospace-Particle Count Data Conversion and Extrapolation

2012-09-24
CURRENT
AIR877C
This SAE Aerospace Information Report (AIR) describes a mathematical model that can be used to analyze particle count data. Particle counts that fit the model can be graphically displayed, converted from one counting size-frequency range to another, and extrapolated to estimate counts beyond the measured range. Derivation, applications, and calculations are described.
Standard

Fine Wire Mesh for Filter Elements

2012-09-24
CURRENT
AIR888C
This SAE Aerospace Information Report (AIR) discusses the terminology, types, method of manufacture and chemistry of the fine wire meshes used for filtration of hydraulic, lubrication fuel systems, and similar applications. Information contained herein may be used for quality assurance testing to insure that a high performance filter grade wire mesh is acceptable for use in an aerospace application.
Standard

Aerospace Microscopic Sizing and Counting of Particulate Contamination for Fluid Power Systems

2012-01-19
HISTORICAL
AS598
This SAE Aerospace Standard (AS) defines the materials, apparatus and procedure for sizing and counting of particulate contamination, 5 µm or greater, in hydraulic fluid samples by membrane filtration with microscopic counting. The microscopic counting method is capable of counting particulate matter in samples withdrawn from fluid power systems as identified by the 12 classes of AS4059 and projected beyond these for the five standard ranges specified and can thus serve as the primary document to determine acceptability. It is also capable of revealing but not measuring evidence of abnormal amount of water, other fluids, fine particulate and other materials, especially fibers and metals. It is applicable to all military, civil, space vehicles and test equipment.
X