Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Car Hacking with CANbus

2024-11-13
Vehicle cybersecurity vulnerabilities could impact a vehicle's safe operation. Therefore, engineers should ensure that systems are designed free of unreasonable risks to motor vehicle safety, including those that may result due to existence of potential cybersecurity vulnerabilities. The automotive industry is making vehicle cybersecurity an organizational priority.
Training / Education

Controller Area Network (CAN) for Vehicle Applications

2024-10-21
The Controller Area Network has become the standard of choice for most automotive manufacturers.  Approved for use as an ISO and EPA diagnostic network, its usage continues to grow.  This course covers the theory and use of the CAN protocol, and its applications in the automotive industry.  Details on how the CAN protocol and other standards (J2411, J2284, J1939, ISO 11898, etc.) complement each other will be presented. Participants will learn about CAN application layers; the latest J1939, J2284, J2411, and IDB standards, regulations, and implementation requirements; and details of device hardware and software interfaces.
Technical Paper

Graph based cooperation strategies for automated vehicles in mixed traffic

2024-07-02
2024-01-2982
In the context of urban smart mobility, vehicles have to communicate with each other, surrounding infrastructure, and other traffic participants. By using Vehicle2X communication, it is possible to exchange the vehicles’ position, driving dynamics data, or driving intention. This concept yields the use for cooperative driving in urban environments. Based on current V2X-communication standards, a methodology for cooperative driving of automated vehicles in mixed traffic scenarios is presented. Initially, all communication participants communicate their dynamic data and planned trajectory, based on which a prioritization is calculated. Therefore, a decentralized cooperation algorithm is introduced. The approach is that every traffic scenario is translatable to a directed graph, based in which a solution for the cooperation problem is computed via an optimization algorithm.
Technical Paper

Set-up of an in-car system for investigating driving style on the basis of the 3D-method

2024-07-02
2024-01-3001
Investigating human driver behavior enhances the acceptance of the autonomous driving and increases road safety in heterogeneous environments with human-operated and autonomous vehicles. The previously established driver fingerprint model, focuses on the classification of driving style based on CAN bus signals. However, driving styles are inherently complex and influenced by multiple factors, including changing driving environments and driver states. To comprehensively create a driver profile, an in-car measurement system based on the Driver-Driven vehicle-Driving environment (3D) framework is developed. The measurement system records emotional and physiological signals from the driver, including ECG signal and heart rate. A Raspberry Pi camera is utilized on the dashboard to capture the driver's facial expressions and a trained convolutional neural network (CNN) recognizes emotion. To conduct unobtrusive ECG measurements, an ECG sensor is integrated into the steering wheel.
X