Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Car Hacking with CANbus

2024-11-13
Vehicle cybersecurity vulnerabilities could impact a vehicle's safe operation. Therefore, engineers should ensure that systems are designed free of unreasonable risks to motor vehicle safety, including those that may result due to existence of potential cybersecurity vulnerabilities. The automotive industry is making vehicle cybersecurity an organizational priority.
Training / Education

Controller Area Network (CAN) for Vehicle Applications

2024-10-21
The Controller Area Network has become the standard of choice for most automotive manufacturers.  Approved for use as an ISO and EPA diagnostic network, its usage continues to grow.  This course covers the theory and use of the CAN protocol, and its applications in the automotive industry.  Details on how the CAN protocol and other standards (J2411, J2284, J1939, ISO 11898, etc.) complement each other will be presented. Participants will learn about CAN application layers; the latest J1939, J2284, J2411, and IDB standards, regulations, and implementation requirements; and details of device hardware and software interfaces.
Technical Paper

Charging infrastructure for employer parking – Real data analysis and charging algorithms for future customer demands

2024-07-02
2024-01-2980
The mobility industry and the entire ecosystem is currently striving towards sus-tainable mobility which leads to continuous production ramp-up of electrified vehicles. The parallel increase of the charging infrastructure is faced with various challenges regarding needed investments and the connection into the electricity grid. MAHLE chargeBIG offers centralized and large scaled charging infrastruc-ture with more than 1,800 already installed charging points. This presentation and paper is evaluating the functionality of the system by ana-lyzing backend real data of various employer parking installations. It can be shown and proven that a single-phase charging concept is sufficient and able to manage most customer relevant charging events by considering the needs and limitations of the related electricity grid infrastructure. Smart charging algorithms enable the integration of the charging infrastructure in smart grid company environments.
Technical Paper

Graph based cooperation strategies for automated vehicles in mixed traffic

2024-07-02
2024-01-2982
In the context of urban smart mobility, vehicles have to communicate with each other, surrounding infrastructure, and other traffic participants. By using Vehicle2X communication, it is possible to exchange the vehicles’ position, driving dynamics data, or driving intention. This concept yields the use for cooperative driving in urban environments. Based on current V2X-communication standards, a methodology for cooperative driving of automated vehicles in mixed traffic scenarios is presented. Initially, all communication participants communicate their dynamic data and planned trajectory, based on which a prioritization is calculated. Therefore, a decentralized cooperation algorithm is introduced. The approach is that every traffic scenario is translatable to a directed graph, based in which a solution for the cooperation problem is computed via an optimization algorithm.
Technical Paper

Set-up of an in-car system for investigating driving style on the basis of the 3D-method

2024-07-02
2024-01-3001
Investigating human driver behavior enhances the acceptance of the autonomous driving and increases road safety in heterogeneous environments with human-operated and autonomous vehicles. The previously established driver fingerprint model, focuses on the classification of driving style based on CAN bus signals. However, driving styles are inherently complex and influenced by multiple factors, including changing driving environments and driver states. To comprehensively create a driver profile, an in-car measurement system based on the Driver-Driven vehicle-Driving environment (3D) framework is developed. The measurement system records emotional and physiological signals from the driver, including ECG signal and heart rate. A Raspberry Pi camera is utilized on the dashboard to capture the driver's facial expressions and a trained convolutional neural network (CNN) recognizes emotion. To conduct unobtrusive ECG measurements, an ECG sensor is integrated into the steering wheel.
Technical Paper

Design of a Decentralized Control Strategy for CACC Systems accounting for Uncertainties

2024-06-12
2024-37-0010
Traditional CACC systems utilize inter-vehicle wireless communication to maintain minimal yet safe inter-vehicle distances, thereby improving traffic efficiency. However, introducing communication delays generates system uncertainties that jeopardize string stability, a crucial requirement for robust CACC performance. To address these issues, we introduce a decentralized Model Predictive Control (MPC) approach that incorporates Kalman Filters and state predictors to counteract the uncertainties posed by noise and communication delays. We validate our approach through MATLAB Simulink simulations, using stochastic and mathematical models to capture vehicular dynamics, Wi-Fi communication errors, and sensor noises. In addition, we explore the application of a Reinforcement Learning (RL)-based algorithm to compare its merits and limitations against our decentralized MPC controller, considering factors like feasibility and reliability.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Technical Paper

Design and Manufacturing of an Inclinometer Sensing Element for Launch Vehicle Applications

2024-06-01
2024-26-0419
Design and Manufacturing of an Inclinometer sensing element for launch vehicle applications Tony M Shaju, Nirmal Krishna, G Nagamalleswara Rao, Pradeep K Scientist/Engineer, ISRO Inertial Systems Unit, Vattiyoorkavu, Trivandrum, India - 695013 Indian Space Research Organisation (ISRO) uses indigenously developed launch vehicles like PSLV, GSLV, LVM3 and SSLV for placing remote sensing and communication satellites along with spacecrafts for other important scientific applications into earth bound orbits. Navigation systems present in the launch vehicle play a pivotal role in achieving the intended orbits for these spacecrafts. During the assembly of these navigation packages on the launch vehicle, it is required to measure the initial tilt of the navigation sensors for any misalignment corrections, which is given as input to the navigation software. A high precision inclinometer is required to measure these tilts with a resolution of 1 arc-second.
Technical Paper

Consensus Based Air Transport System for Strategic Deconfliction for Urban Air Mobility

2024-06-01
2024-26-0405
Advanced Air Mobility (AAM) envisions heterogenous airborne entities like crewed and uncrewed passenger and cargo vehicles within, and between urban and rural environment. To achieve this, a paradigm shift to a cooperative operating environment similar to Extensible Traffic Management (xTM) is needed. This requires the blending of Traditional Air Traffic Services (ATS) with the new generation AAM vehicles having their unique flight dynamics and handling characteristics. A hybrid environment needs to be established with enhanced shared situational awareness for all stakeholders, enabling equitable airspace access, minimizing risk, optimized airspace use, and providing flexible and adaptable airspace rules. This paper introduces a novel concept of distributed airspace management which would be apt for all kinds of operational scenarios perceived for AAM. The proposal is centered around the efficiency and safety in air space management being achieved by self-discipline.
Technical Paper

A CDMA Based Approach for QoS Improvement in Intra-Aircraft Wireless Sensor Networks (WSN)

2024-06-01
2024-26-0435
Aviation industry is striving to leverage the technological advancements in connectivity, computation and data analytics. Scalable and robust connectivity enables futuristic applications like smart cabins, prognostic health management (PHM) and AI/ML based analytics for effective decision making leading to flight operational efficiency, optimized maintenance planning and aircraft downtime reduction. Wireless Sensor Networks (WSN) are gaining prominence on the aircraft for providing large scale connectivity solution that are essential for implementing various health monitoring applications like Structural Health Monitoring (SHM), Prognostic Health Management (PHM), etc. and control applications like smart lighting, smart seats, smart lavatory, etc. These applications help in improving passenger experience, flight operational efficiency, optimized maintenance planning and aircraft downtime reduction.
Technical Paper

Single Board Computer Based Data Acquisition System for Monitoring Parameters of Reusable Launch Vehicle Interface System

2024-06-01
2024-26-0434
With the upcoming technology demonstration projects such as the Reusable Launch Vehicle, easily portable data acquisition systems for ground testing are the need of the hour. The existing data acquisition systems used in ISRO scenario tends to be bulky or to be of higher capability based on the number parameters to be acquired, which makes them underutilized. To tackle this problem, a novel approach to implement a data acquisition system on BeagleBone®️ Black, a Single Board Computer (SBC) was conceived. With this approach the number of components utilized would be reduced as we make use of ADCs present in the BeagleBone computer. Also, the size of the hardware setup is significantly reduced as the chosen SBC fits into the palm of our hands. To protect the data acquisition components from common mode voltages, an isolation amplifier is utilized. The acquired parameters are digitized and broadcasted.
Technical Paper

Post Flight Simulation of Dynamic Responses at the Satellite Interface of a Typical Launch Vehicle During Solid Motor Ignition

2024-06-01
2024-26-0461
Launch vehicle structures in course of its flight will be subjected to dynamic forces over a range of frequencies up to 2000 Hz. These loads can be steady, transient or random in nature. The dynamic excitations like aerodynamic gust, motor oscillations and transients, sudden application of control force are capable of exciting the low frequency structural modes and cause significant responses at the interface of launch vehicle and satellite. The satellite interface responses to these low frequency excitations are estimated through Coupled Load Analysis (CLA). The analysis plays a crucial role in mission as the satellite design loads and Sine vibration test levels are defined based on this. The perquisite of CLA is to predict the responses with considerable accuracy so that the design loads are not exceeded in the flight. CLA validation is possible by simulating the flight experienced responses through the analysis.
Technical Paper

INLS 3U Unipod Nano Satellite (CubeSat) Dispenser System for 3U Class Satellites

2024-06-01
2024-26-0458
With the present state of the art technology, size and mass of the satellites have come down. This necessitated the need for a low shock separation system that does not have mass attached to the separated satellite. Development of Nano satellites with mass of the order of 1 to 24 kg has become popular among scientific/ academic institutions for carrying out scientific experiments. INLS 3U Unipod System (Nano satellite dispenser system) is a satellite dispensing system designed by ISRO for accommodating four 3U class Nano satellites in a single structure where each satellite is deployed independently by separate actuation commands. INLS stands for ISRO's Nano satellite Launch System. The Unipod separation system successfully flown first time in PSLV C56 Mission for the deployment of three foreign satellites namely Nulion, Galassia-2 and SCOOB II.
X