Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Projecting Lane Lines from Proxy High-Definition Maps for Automated Vehicle Perception in Road Occlusion Scenarios

2023-04-11
2023-01-0051
Contemporary ADS and ADAS localization technology utilizes real-time perception sensors such as visible light cameras, radar sensors, and lidar sensors, greatly improving transportation safety in sufficiently clear environmental conditions. However, when lane lines are completely occluded, the reliability of on-board automated perception systems breaks down, and vehicle control must be returned to the human driver. This limits the operational design domain of automated vehicles significantly, as occlusion can be caused by shadows, leaves, or snow, which all occur in many regions. High-definition map data, which contains a high level of detail about road features, is an alternative source of the required lane line information. This study details a novel method where high-definition map data are processed to locate fully occluded lane lines, allowing for automated path planning in scenarios where it would otherwise be impossible.
Technical Paper

High-Fidelity Heavy-Duty Vehicle Modeling Using Sparse Telematics Data

2022-03-29
2022-01-0527
Heavy-duty commercial vehicles consume a significant amount of energy due to their large size and mass, directly leading to vehicle operators prioritizing energy efficiency to reduce operational costs and comply with environmental regulations. One tool that can be used for the evaluation of energy efficiency in heavy-duty vehicles is the evaluation of energy efficiency using vehicle modeling and simulation. Simulation provides a path for energy efficiency improvement by allowing rapid experimentation of different vehicle characteristics on fuel consumption without the need for costly physical prototyping. The research presented in this paper focuses on using real-world, sparsely sampled telematics data from a large fleet of heavy-duty vehicles to create high-fidelity models for simulation. Samples in the telematics dataset are collected sporadically, resulting in sparse data with an infrequent and irregular sampling rate.
Technical Paper

Model in the Loop Control Strategy Evaluation Procedure for an Autonomous Parking Lot Sweeper

2022-03-29
2022-01-0086
A path tracking controller is essential for an autonomous vehicle to navigate a complex environment while avoiding obstacles. Many research studies have proposed new controller designs and strategies. However, it is often unclear which control strategy is the most suitable for a specific Autonomous / ADAS user application. This study proposes a benchmark workflow by comparing different control observer models and their control strategies integration for an autonomous parking lot sweeper in a complex and dense environment at low-speed utilizing model-in-the-loop simulation. The systematic procedure consists of the following steps: (1) vehicle observer model validation (2) control strategy development (3) model-in-the-loop simulation benchmark for specific user scenarios. The kinematic and dynamic vehicle models were used to validate the truck’s behavior using physical data.
Technical Paper

No Cost Autonomous Vehicle Advancements in CARLA through ROS

2021-04-06
2021-01-0106
Development of autonomous vehicle technology is expensive and perhaps more complicated than initially thought, as evidenced by the recent rollback of anticipated delivery dates from companies such as Tesla, Waymo, GM, and more. One of the most effective techniques to reduce research and development costs and speed up implementation is rigorous analysis through simulation. In this paper, we present multiple autonomous vehicle perception and control strategies that are rigorously investigated in the user friendly, free, and open-source simulation environment, CARLA. Overall, we successfully formulated potential solutions to the autonomous navigation problem and assessed their advantages and disadvantages in simulation at no cost. First, a lane finding method utilizing polynomial fitting and machine learning is proposed. Then, the waypoint navigation strategy is described, along with route planning. Object detection is then implemented using pre-trained convolutional neural networks.
Technical Paper

High-Fidelity Modeling of Light-Duty Vehicle Emission and Fuel Economy Using Deep Neural Networks

2021-04-06
2021-01-0181
The transportation sector contributes significantly to emissions and air pollution globally. Emission models of modern vehicles are important tools to estimate the impact of technologies or controls on vehicle emission reductions, but developing a simple and high-fidelity model is challenging due to the variety of vehicle classes, driving conditions, driver behaviors, and other physical and operational constraints. Recent literature indicates that neural network-based models may be able to address these concerns due to their high computation speed and high-accuracy of predicted emissions. In this study, we seek to expand upon this initial research by utilizing several deep neural networks (DNN) architectures such as a recurrent neural network (RNN) and a convolutional neural network (CNN). These DNN algorithms are developed specific to the vehicle-out emissions prediction application, and a comprehensive assessment of their performances is done.
Technical Paper

Using Reinforcement Learning and Simulation to Develop Autonomous Vehicle Control Strategies

2020-04-14
2020-01-0737
While machine learning in autonomous vehicles development has increased significantly in the past few years, the use of reinforcement learning (RL) methods has only recently been applied. Convolutional Neural Networks (CNNs) became common for their powerful object detection and identification and even provided end-to-end control of an autonomous vehicle. However, one of the requirements of a CNN is a large amount of labeled data to inform and train the neural network. While data is becoming more accessible, these networks are still sensitive to the format and collection environment which makes the use of others’ data more difficult. In contrast, RL develops solutions in a simulation environment through trial and error without labeled data. Our research expands upon previous research in RL and Proximal Policy Optimization (PPO) and the application of these algorithms to 1/18th scale cars by expanding the application of this control strategy to a full-sized passenger vehicle.
Technical Paper

Vehicle Velocity Prediction Using Artificial Neural Network and Effect of Real World Signals on Prediction Window

2020-04-14
2020-01-0729
Prediction of vehicle velocity is important since it can realize improvements in the fuel economy/energy efficiency, drivability, and safety. Velocity prediction has been addressed in many publications. Several references considered deterministic and stochastic approaches such as Markov chain, autoregressive models, and artificial neural networks. There are numerous new sensor and signal technologies like vehicle-to-vehicle and vehicle-to-infrastructure communication that can be used to obtain inclusive datasets. Using these inclusive datasets of sensors in deep neural networks, high accuracy velocity predictions can be achieved. This research builds upon previous findings that Long Short-Term Memory (LSTM) deep neural networks provide low error velocity prediction. We developed an LSTM deep neural network that uses different groups of datasets collected in Fort Collins, Colorado.
Journal Article

Analysis of LiDAR and Camera Data in Real-World Weather Conditions for Autonomous Vehicle Operations

2020-04-14
2020-01-0093
Autonomous vehicle technology has the potential to improve the safety, efficiency, and cost of our current transportation system by removing human error. With sensors available today, it is possible for the development of these vehicles, however, there are still issues with autonomous vehicle operations in adverse weather conditions (e.g. snow-covered roads, heavy rain, fog, etc.) due to the degradation of sensor data quality and insufficiently robust software algorithms. Since autonomous vehicles rely entirely on sensor data to perceive their surrounding environment, this becomes a significant issue in the performance of the autonomous system. The purpose of this study is to collect sensor data under various weather conditions to understand the effects of weather on sensor data. The sensors used in this study were one camera and one LiDAR. These sensors were connected to an NVIDIA Drive Px2 which operated in a 2019 Kia Niro.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning

2019-04-02
2019-01-1051
There is a pressing need to develop accurate and robust approaches for predicting vehicle speed to enhance fuel economy/energy efficiency, drivability and safety of automotive vehicles. This paper details outcomes of research into various methods for the prediction of vehicle velocity. The focus is on short-term predictions over 1 to 10 second prediction horizon. Such short-term predictions can be integrated into a hybrid electric vehicle energy management strategy and have the potential to improve HEV energy efficiency. Several deterministic and stochastic models are considered in this paper for prediction of future vehicle velocity. Deterministic models include an Auto-Regressive Moving Average (ARMA) model, a Nonlinear Auto-Regressive with eXternal input (NARX) shallow neural network and a Long Short-Term Memory (LSTM) deep neural network. Stochastic models include a Markov Chain (MC) model and a Conditional Linear Gaussian (CLG) model.
Technical Paper

Development of an Autonomous Vehicle Control Strategy Using a Single Camera and Deep Neural Networks

2018-04-03
2018-01-0035
Autonomous vehicle development has benefited from sanctioned competitions dating back to the original 2004 DARPA Grand Challenge. Since these competitions, fully autonomous vehicles have become much closer to significant real-world use with the majority of research focused on reliability, safety and cost reduction. Our research details the recent challenges experienced at the 2017 Self Racing Cars event where a team of international Udacity students worked together over a 6 week period, from team selection to race day. The team’s goal was to provide real-time vehicle control of steering, braking, and throttle through an end-to-end deep neural network. Multiple architectures were tested and used including convolutional neural networks (CNN) and recurrent neural networks (RNN). We began our work by modifying a Udacity driving simulator to collect data and develop training models which we implemented and trained on a laptop GPU.
Technical Paper

Investigation of Vehicle Speed Prediction from Neural Network Fit of Real World Driving Data for Improved Engine On/Off Control of the EcoCAR3 Hybrid Camaro

2017-03-28
2017-01-1262
The EcoCAR3 competition challenges student teams to redesign a 2016 Chevrolet Camaro to reduce environmental impacts and increase energy efficiency while maintaining performance and safety that consumers expect from a Camaro. Energy management of the new hybrid powertrain is an integral component of the overall efficiency of the car and is a prime focus of Colorado State University’s (CSU) Vehicle Innovation Team. Previous research has shown that error-less predictions about future driving characteristics can be used to more efficiently manage hybrid powertrains. In this study, a novel, real-world implementable energy management strategy is investigated for use in the EcoCAR3 Hybrid Camaro. This strategy uses a Nonlinear Autoregressive Artificial Neural Network with Exogenous inputs (NARX Artificial Neural Network) trained with real-world driving data from a selected drive cycle to predict future vehicle speeds along that drive cycle.
X