Refine Your Search

Topic

Search Results

Technical Paper

Experimental Study on Bendability of Advanced High Strength Steels

2024-04-09
2024-01-2860
Fracturing in a tight radius during bending is one of the major manufacturing issues in forming Advanced High Strength Steels (AHSS). The study investigated the bendability of AHSS under two forming conditions: bending with and without stretched over the die radius. The bendability was evaluated by conducting modified Bending Under Tension (BUT) test for stretch bending and 90o v bend test for bending without stretch. The study also examined the effect of material properties on the limiting bend ratio. Various strength high strength steels, range from 420 MPa to 1700 MPa tensile strength, were selected in the study. Results indicated that critical radius-to-thickness ratios between the two tests are different but correlated in a relationship which was depicted in the bendability diagram.
Technical Paper

Lubrication Effects on Automotive Steel Friction between Bending under Tension and Draw Bead Test

2023-04-11
2023-01-0729
Zinc-based electrogalvanized (EG) and hot-dip galvanized (HDGI) coatings have been widely used in automotive body-in-white components for corrosion protection. The formability of zinc coated sheet steels depends on the properties of the sheet and the interactions at the interface between the sheet and the tooling. The frictional behavior of zinc coated sheet steels is influenced by the interfacial conditions present during the forming operation. Friction behavior has also been found to deviate from test method to test method. In this study, various lubrication conditions were applied to both bending under tension (BUT) test and a draw bead simulator (DBS) test for friction evaluations. Two different zinc coated steels; electrogalvanized (EG) and hot-dip galvanized (HDGI) were included in the study. In addition to the coated steels, a non-coated cold roll steel was also included for comparison purpose.
Technical Paper

Zebra Line Laser Heat Treated Die Development

2020-04-14
2020-01-0756
The thermal deflection associated with the conventional die heat treating procedure usually requires extra die grinding process to fine-tune the die surface. Due to the size of the production die, the grinding is time consuming and is not cost effective. The goal of the study is to develop a new die heat treating process utilizing the flexible laser heat treatment, which could serve the same purpose as the conventional die heat treating and avoid the thermal deflection. The unique look of the developed zebra pattern laser heat treating process is defined as the Zebra Line. The heat-treating parameters and processes were developed and calibrated to produce the laser heat treating on laboratory size dies, which were subjected to the die wear test in the laboratory condition. The USS HDGI 980 XG3TM steel was selected to be carried out on the developmental dies in the cyclic bend die wear test due to its high strength and coating characteristic.
Technical Paper

Calibration and Validation of GISSMO Damage Model for A 780-MPa Third Generation Advanced High Strength Steel

2020-04-14
2020-01-0198
To evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict material fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel that combines high strength and ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states.
Technical Paper

Structural Performance Comparison between 980MPa Generation 3 Steel and Press Hardened Steel Applied in the Body-in-White A and B-Pillar Parts

2020-04-14
2020-01-0537
Commercially available Generation 3 (GEN3) advanced high strength steels (AHSS) have inherent capability of replacing press hardened steels (PHS) using cold stamping processes. 980 GEN3 AHSS is a cold stampable steel with 980 MPa minimum tensile strength that exhibits an excellent combination of formability and strength. Hot forming of PHS requires elevated temperatures (> 800°C) to enable complex deep sections. 980 GEN3 AHSS presents similar formability as 590 DP material, allowing engineers to design complex geometries similar to PHS material; however, its cold formability provides implied potential process cost savings in automotive applications. The increase in post-forming yield strength of GEN3 AHSS due to work and bake hardening contributes strongly toward crash performance in energy absorption and intrusion resistance.
Journal Article

Effects of Nitrided and Chrome Plated Die Surface Roughness on Friction in Bending Under Tension

2019-04-02
2019-01-1093
Different die surface polish conditions result in a noticeable effect on material flow in stamping, which can lead to splitting, wrinkling, or other surface stretching issues associated with different friction conditions. These occurrences are not only limited to the non-coated dies, but also nitrided and chrome plated dies. To ensure quality control of the stamped parts, the die conditions corresponding to different polishing procedures need to be developed based on measurable parameters such as surface roughness (Ra). The intent of this study is to investigate the effects of nitrided and chrome plated die surface roughness on friction. The Bending-Under-Tension (BUT) test was conducted to simulate the stamping process due to the test’s versatility and flexibility in changing test parameters. The test involves moving sheet metal across a 3/8-inch diameter pin, which substitutes for a die surface. The pin can be modified by material, heat treatment, coating, and surface roughness.
Journal Article

Validation of GISSMO Model for Fracture Prediction of a Third-Generation Advanced High-Strength Steel

2018-04-03
2018-01-0107
Advanced high-strength steels (AHSS), due to their significantly higher strength than the conventional high-strength steels, are increasingly used in the automotive industry to meet future safety and fuel economy requirements. Unlike conventional steels, the properties of AHSS can vary significantly due to the different steelmaking processes and their fracture behaviors should be characterized. In crash analysis, a fracture model is often integrated in the simulations to predict fracture during crash events. In this article, crash simulations including a fracture criterion are conducted for a third-generation AHSS, that is, 980GEN3. A generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA is employed to evaluate the fracture predictability in the crash simulations.
Technical Paper

Effects of AHSS Sheared Edge Conditions on Crash Energy Absorption in Component Bend Test

2018-04-03
2018-01-0113
Edge fracture of advanced high strength steels (AHSS) can occur in both the stamping process and the crash event. Fracture due to poor sheared edge conditions in the stamping process was reduced with a recently developed optimal shearing process for AHSS. Currently, the improvement in the energy absorption due to the improved edge condition during crashes performed under different loading conditions had not been closely verified. The purpose of this study is to design and build a miniature component of AHSS and a three-point bending test for investigating the influence of various conditions of the sheared edge on the energy absorption in crashes. AHSS including DP600, TRIP780, DP980 and DP1180 were selected in the study. A small channel component was developed and fabricated using DP980 to simulate key features of the B-pillar. The exposed non-constrained, as-sheared edge was subject to stretch bending forces in three-dimensional space during the three-point bending test.
Technical Paper

Effects of Blanking Conditions to Edge Cracking in Stamping of Advanced-High Strength Steels (AHSS)

2018-04-03
2018-01-0626
Practical evaluation and reduction of edge cracking are two challenging issues in stamping AHSS for automotive body structures. In this paper, the effects of the shear clearance and shear rake angle on edge cracking were investigated with three different grades of AHSS; TRIP780, DP 980, and DP 1180. Five different shear clearances, between 5% and 25% of material thickness, were applied to the flexible shearing machine to generate samples for the half specimen dome test (HSDT). The shear loads and the shear edge quality were thoroughly characterized and compared. The HSDT created the edge forming limits as compared to the base material forming limit diagram. The load-displacement curve was acquired by the load-cell and the strain distribution was measured using a digital image correlation (DIC) system during the dome test.
Technical Paper

Failure Modeling of Adhesive Bonded Joints with Cohesive Elements

2017-03-28
2017-01-0351
Advanced high strength steels (AHSS) have been extensively used in the automotive industry for vehicle weight reduction. Although AHSS show better parent metal fatigue performance, the influence of material strength on spot weld fatigue is insignificant. To overcome this drawback, structural adhesive can been used along with spot weld to form weld-bond joints. These joints significantly improve spot weld fatigue performance and provide high joint stiffness enabling down-gauge of AHSS structures. However, modeling the adhesive joints using finite element methods is a challenge due to the nonlinear behavior of the material. In this study, the formulation of cohesive element based on the traction-separation constitutive law was applied to predict the initiation and propagation of the failure mode in the adhesively bonded joints for lap shear and coach peel specimens subjected to quasi-static loadings. The predicted load versus displacement relations correlated well with the test results.
Journal Article

Effects of Punch Configuration on the AHSS Edge Stretchability

2017-03-28
2017-01-1705
The hole piercing process is a simple but important task in manufacturing processes. The quality requirement of the pierced hole varies between different applications. It can be either the size or the edge quality of the hole. Furthermore, the pierced hole is often subject to a secondary forming process, in which the edge stretchability is of a main concern. The recently developed advanced high strength steels (AHSS) and ultra high strength steels (UHSS) have been widely used for vehicle weight reduction and safety performance improvements. Due to the higher strength nature of these specially developed sheet steels, the hole piercing conditions are more extreme and challenging, and the quality of the pierced hole can be critical due to their relatively lower edge stretching limits than those for the conventional low and medium strength steels. The stretchability of the as-sheared edge inside the hole can be influenced by the material property, die condition and processing parameters.
Journal Article

Friction and Die Wear in Stamping Prephospated Advanced High Strength Steels

2016-04-05
2016-01-0356
Prephosphated steels have been developed by applying the phosphate coating on zinc coated sheet steels to increase the lubricity in the automotive stamping process and adding extra corrosion protection. The prephosphate coating was also found to be able to further absorb the lubricant, which can reduce the oil migration and excessive amount of lubricant dripping on the die surface and the press floor. Due to its enhanced lubricity characteristic, the applications have been expanded to more-recently developed advanced high strength steels (AHSS). Because of the higher strength of AHSS, it is crucial to understand their performance under more extreme forming conditions such as higher die temperature, contact pressure and sliding speed, etc. The intent of this study is to investigate the tribological performance and die wear behavior of prephosphated AHSS in the die tryout and production conditions.
Technical Paper

An Experimental Study on Static and Fatigue Strengths of Resistance Spot Welds with Stack-up of Advanced High Strength Steels and Adhesive

2016-04-05
2016-01-0389
This paper describes static and fatigue behavior of resistance spot welds with the stack-up of conventional mild and advanced high strength steels, with and without adhesive, based on a set of lap shear and coach peel coupon tests. The coupons were fabricated following specified spot welding and adhesive schedules. The effects of similar and dissimilar steel grade sheet combinations in the joint configuration have been taken into account. Tensile strength of the steels used for the coupons, both as-received and after baked, and cross-section microstructure photographs are included. The spot weld SN relations between this study and the study by Auto/Steel Partnership are compared and discussed.
Journal Article

Experimental Study of Edge Stretching Limits of DP980IBF Steel in Multistage Forming Process

2015-04-14
2015-01-0525
Automotive structural parts made out of Advanced High Strength Steel (AHSS) are often produced in a multistage forming process using progressive dies or transfer dies. During each forming stage the steel is subjected to work hardening, which affects the formability of the steel in the subsequent forming operation. Edge flanging and in-plane edge stretching operations are forming modes that are typically employed in the last stage of the multistage forming processes. In this study, the multistage forming process was simulated by pre-straining a DP980 steel in a biaxial strain path with various strain levels followed by edge flanging and in-plane edge stretching. The biaxial prestrains were obtained using the Marciniak stretch test and edge flanging and in-plane edge stretching were accomplished by the hole expansion test using a flat punch and a conical punch, respectively.
Journal Article

Simulation and Optimization of an Aluminum-Intensive Body-on-Frame Vehicle for Improved Fuel Economy and Enhanced Crashworthiness - Front Impacts

2015-04-14
2015-01-0573
Motivated by a combination of increasing consumer demand for fuel efficient vehicles, more stringent greenhouse gas, and anticipated future Corporate Average Fuel Economy (CAFE) standards, automotive manufacturers are working to innovate in all areas of vehicle design to improve fuel efficiency. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, reducing vehicle weight by using lighter materials and/or higher strength materials has been identified as one of the strategies in future vehicle development. Weight reduction in vehicle components, subsystems and systems not only reduces the energy needed to overcome inertia forces but also triggers additional mass reduction elsewhere and enables mass reduction in full vehicle levels.
Journal Article

Fatigue Based Lightweight Optimization of a Pickup Cargo Box with Advanced High Strength Steels

2014-04-01
2014-01-0913
Advanced high strength steels (AHSS) offer a good balance of strength, durability, crash energy absorption and formability. Applications of AHSS for lightweight designs of automotive structures are accelerating in recent years to meet the tough new CAFE standard for vehicle fuel economy by 2025. At the same time, the new generation pickup cargo box is to be designed for a dramatic increase in payload. Upgrading the box material from conventional mild steels to AHSS is necessary to meet the conflicting requirements of vehicle light weighting and higher payload. In this paper, typical AHSS grades such as DP590 and DP780 were applied to selected components of the pickup cargo box for weight reduction while meeting the design targets for fatigue, strength and local stiffness.
Technical Paper

Optimal Production Trimming Process for AHSS Sheared Edge Stretchability Improvement

2014-04-01
2014-01-0994
Edge fracture is one of the major issues for stamping Advanced High Strength Steel (AHSS). Recent studies have showed this type of fracture is greatly affected by an improper trimming process. The current production trimming process used for the conventional mild steels has not been modified for AHSS trimming. In addition to the high-energy requirement, the current mechanical trimming process would generate a rough edge (burr) with microcracks in trimmed edges for AHSS trimming, which could serve as the crack initiation during forming. The purpose of this study is to develop a proper production trimming process for AHSS and elucidate the effect of the trimmed edge conditions on edge fracture. A straight edge shearing device with the capability of adjusting the shearing variables is used in this study.
Technical Paper

Studies on Edge Strain Hardening Produced by Trimming Operations

2013-04-08
2013-01-1774
Advanced high strength steels (AHSS) are widely used in the automotive industry for various applications especially for structural and safety parts. One of the concerns for AHSS in stamping operations is edge fracture originating from sheared blanked edges. This type of failure cannot be predicted by computer simulations using the conventional forming limit as the failure criterion. The reason for this is that edge damage produced by the blanking operation is not incorporated into the computer models to properly simulate the material edge formability. This study presents a method to evaluate edge damage in terms of the residual stress at the sheared edge produced by the blanking operation. The method uses the level and distribution of edge strain hardening (ESH) through the material thickness as an index to characterize the edge damage caused by the shearing operation.
Journal Article

Optimized AHSS Structures for Vehicle Side Impact

2012-04-16
2012-01-0044
Advanced high strength steels (AHSS) have been widely accepted as a material of choice in the automotive industry to balance overall vehicle weight and stringent vehicle crash test performance targets. Combined with efficient use of geometry and load paths through shape and topology optimization, AHSS has enabled vehicle manufacturers to obtain the highest possible ratings in safety evaluations by the Insurance Institute for Highway Safety (IIHS) and the National Highway Traffic Safety Administration (NHTSA). In this study, vehicle CAE side impact models were used to evaluate three side impact crash test conditions (IIHS side impact, NHTSA LINCAP and FMVSS 214 side pole) and the IIHS roof strength test condition and to identify several key components affecting the side impact test performance. HyperStudy® optimization software and LS-DYNA® nonlinear finite element software were utilized for shape and gauge optimization.
Technical Paper

The Prestrain Effect on the Sheared Edge Flangeability of Dual Phase 780 Steels

2012-04-16
2012-01-0533
Edge flanging represents one of the forming modes employed in multistage forming, and advanced high strength steels (AHSS) are more prone to edge cracking during sheared edge flanging than the conventional high strength steels (HSS) and mild steels. The performance of the sheared edge in flanging operation depends on the remaining ductility of the material in the sheared edge after the work hardening (WH) and damage produced by blanking and subsequent forming operations. Therefore, it is important to analyze the effect of work hardening produced by blanking and subsequent forming operations prior to edge flanging on the edge flanging performance. In this study, the effect of different forming operation sequences prior to edge flanging on the edge flanging performance was analyzed for a dual phase 780 steel.
X