Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Investigation of the Heat Release Rate in a Sinusoidal Spark Ignition Engine

1989-02-01
890778
Compression and power stroke cycles for a 4 stroke cycle spark ignition engine modified by extending the connecting rod to simulate purely sinusoidal piston motion are analyzed over a range of operating speeds and are compared with those of a similar conventional engine. Heat release rate is estimated for both engines using a simple Wiebe function with the functional parameters found via a simplex curve fitting method used in conjunction with experimental pressure curves. It is shown that the functional parameters which represent the combustion and the duration of fuel burn are slightly larger over the range of operation in the sinusoidal engine while the shape factor remains largely the same. However, the pressure-crank angle curves are sufficiently similar such that conventional slider-crank curves can be used to model sinusoidal engines, which was the motivation behind this research.
Technical Paper

The Influence of Sinusoidal Piston Motion on the Thermal Efficiency of Engines

1987-10-01
871916
A new technique of translating linear to rotary motion, using the Stiller- Smith mechanism, can be applied to the design of internal combustion engines and compressors. This new mechanism produces purely sinusoidal motion of the pistons relative to crank angle, which is a different motion from that produced by a conventional slider-crank mechanism, Influence of this sinusoidal motion on thermodynamic performance of engines and compressors was investigated theoretically and experimentally. Data are presented from a numerical analysis of compression and of spark-ignited combustion. Also, pressure-time curves for a standard and a modified (long connecting rod) spark ignition engine are compared. All data confirm that there is little thermodynamic difference between the Stiller-Smith and slider-crank devices.
Technical Paper

Thermodynamic implications of the Stiller-Smith Mechanism

1987-02-01
870615
The Stiller-Smith mechanism is a new mechanism for the translation of linear motion into rotary motion, and has been considered as an alternative to the conventional slider-crank mechanism in the design of internal combustion engines and piston compressors. Piston motion differs between the two mechanisms, being perfectly sinusoidal for the Stiller-Smith case. Plots of dimensionless volume and volume rate-change are presented for one engine cycle. It is argued that the different motion is important when considering rate-based processes such as heat transfer to a cylinder wall and chemical kinetics during combustion. This paper also addresses the fact that a Stiller-Smith engine will be easier to configure for adiabatic operation, with many attendant benefits.
X