Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

CFD-3D Multi-Cycle Analysis on a New 2-Stroke HSDI Diesel Engine

2009-04-20
2009-01-0707
The paper describes a CFD multidimensional and multicycle engine analysis applied to a novel 2-Stroke HSDI Diesel engine, under development since a few years at the University of Modena and Reggio Emilia. In particular, six operating conditions are considered, two of them at full load and four at partial. The simulation tool is STAR-CD, a commercial software extensively applied by the authors to HSDI Diesel engines. Furthermore, an experimental calibration of the combustion model has been performed and reported in this paper, carrying out CFD simulations on a reference Four Stroke HSDI Diesel engine. As expected, in the multi-cycle analysis a wide dependence of pollutants on trapped charge composition has been found. Much less relevant is the cycle-by-cycle variation in terms of performance parameters, such as trapped mass, IMEP, combustion efficiency, etc.
Technical Paper

Influence of a Swirling Air Flow on an Evaporating Diesel Spray from a Common Rail Injection System under Realistic Engine Conditions

2007-09-16
2007-24-0021
The aim of the present paper is to provide an insight into the fluid dynamic processes that occur during the air/fuel mixture formation period in direct injection diesel engines. An experimental and numerical investigation has been performed to analyse the mixing process between an evaporating diesel spray and a swirl air flow under realistic engine conditions. Experimental tests have been carried out spraying the fuel within an optically accessible prototype 2-stroke Diesel engine equipped with an external combustion chamber having cylindrical shape. The intake air flow, coming from the engine cylinder, is forced within the combustion chamber by means of a tangential duct generating a well structured swirl flow similar to that developing in a real light duty diesel engine with a high swirl ratio. A micro-sac 5-hole, 0.13 mm diameter, 150° spray angle electro-hydraulic injector supplies the fuel by a common rail injection system able to manage multiple injection strategies.
Technical Paper

Experimental and Numerical Analyses of Performances and Noise Emission of a Common Rail Light Duty D.I. Diesel Engine

2007-09-16
2007-24-0017
This paper illustrates a numerical and experimental analysis of performances and overall noise radiated from a common rail light duty diesel engine. The engine was equipped with two different injection systems: an under development low-cost fuel injector and a commercial Bosch one, employed for automotive applications. The injectors behaviour was compared throughout an experimental investigation that was carried out on a naturally aspirated, four strokes, two valves, single cylinder engine (225 cm3 displacement). Both engine performances, pollutant and noise emissions were measured at different operating conditions for two injection strategies. Concerning the acoustic analysis, both structure born and gasdynamic noise contributions were estimated using different experimental techniques.
Technical Paper

Multidimensional Cycle Analysis on a Novel 2-Stroke HSDI Diesel Engine

2007-04-16
2007-01-0161
The Department of Mechanical and Civil Engineering (DIMeC) of the University of Modena and Reggio Emilia is developing a new type of small capacity HSDI 2-Stroke Diesel engine, featuring a specifically designed combustion system. The present paper is focused on the analysis of the scavenging process, carried out by means of 3D-CFD simulations, supported by 1D engine cycle calculations. First, a characterization of the flow through the ports and within the cylinder is performed under conventional operating conditions. Then, a complete 3D cycle simulation, including combustion, is carried out at four actual operating conditions, at full load. The CFD results provide fundamental information to address the development of the scavenging system, as well as to calibrate a comprehensive 1D engine model.
Technical Paper

CFD Optimisation of the In-Cylinder Flow Patterns in a Small Unit Displacement HSDI Diesel Engine for Off-Highway Applications

2006-11-13
2006-32-0001
The aim of the paper is to provide information about the in-cylinder flow field optimisation in a high speed, direct injection (HSDI) four valve per cylinder diesel engine for off-highway applications. Fully transient CFD analyses of different valve profile strategies for the intake and compression strokes are at first performed, in order to evaluate the effects on both engine permeability and in-cylinder flow field evolution. Modifications are applied to each intake valve separately: gradually stretched cam profiles are imposed so that strategies range from the standard operation, i.e. the adoption of a unique cam profile for the two intake valves, up to the limit case characterized by a 40 % difference between the intake valves maximum valve lifts for three different engine conditions.
Technical Paper

Experimental Investigation of a Spray from a Multi-jet Common Rail Injection System for Small Engines

2005-09-11
2005-24-090
This paper illustrates the results of an experimental investigation on the liquid fuel spray from a multi-jet common rail injection system both under non evaporative and evaporative conditions. Tests have been taken using a 5 hole, 0.13 mm diameter, 150° spray angle, micro-sac nozzle having a flow rate of 270 cm3/30 sec@10 MPa exploring different injection strategies. Experiments have been taken, under non evaporative conditions, injecting the fuel within stagnant inert gas, at different density, in a high-pressure optically-accessible cylindrical vessel with three large quartz windows. Under evaporative conditions, the experiments have been taken within a crank-case scavenged single-cylinder 2-stroke direct injection Diesel engine provided of optical accesses to the combustion chamber. It allows to study the fuel injection process under thermodynamic conditions similar to those currently reached in modern direct injection diesel engines.
Technical Paper

Experimental and Numerical Investigation on Mixture Formation in a HDDI Diesel Engine With Different Combustion Chamber Geometries

2005-09-11
2005-24-055
One of the most important phases in the development of direct-injected diesel engines is the optimization of the fuel spray evolution within the combustion chamber, since it strongly influences both the engine performance and the pollutant emissions. Aim of the present paper is to provide information about mixture formation within the combustion chamber of a heavy-duty direct injection (HDDI) diesel engine for marine applications. Spray evolution, in terms of tip penetration, is at first investigated under quiescent conditions, both experimentally and numerically, injecting the fuel in a vessel under ambient temperature and controlled gas back-pressure. Results of penetration and images of the spray from the optically accessible high-pressure vessel are used to investigate the capabilities of some state-of-the-art spray models within the STAR-CD software in correctly capturing spray shape and propagation.
Technical Paper

Some Insight on Premixed Combustion in Diesel Engine With Late Injection: The Influence of Air and Injection Parameters

2005-09-11
2005-24-047
Aim of the present paper was an evaluation of the importance of some engine parameters (intake gas flow and injection parameters) on the approach of Premixed Low Temperature Combustion (PLTC) conditions with the same efficiency of a conventional diesel cycle and ultra-low pollutant emissions. The results have demonstrated that the control of PLTC mode is very difficult and the engine parameters play a critical role on the exhaust pollutant emissions, indicating that further massive research activities are needed to reach reliable practical applications.
Technical Paper

Analysis of a High Pressure Diesel Spray at High Pressure and Temperature Environment Conditions

2005-04-11
2005-01-1239
This paper illustrates the results of an experimental characterization of a high pressure diesel spray injected by a common rail (CR) injection system both under non-evaporative and evaporative conditions. Tests have been made injecting the fuel with a single hole injector having a diameter of 0.18 mm with L/D=5.56. The fuel has been sprayed at 60, 90 and 120 MPa, with an ambient pressure ranging between 1.2 to 5.0 MPa. The spray evolution has been investigated, by the Mie scattering technique, illuminating the fuel jet and acquiring single shot images by a CCD camera. Tests under non-evaporative conditions have been carried out in an optically accessible high pressure vessel filled with inert gas (N2) at diesel-like density conditions. The instantaneous fuel injection rate, obtained with a time resolution of 10 microseconds, has been also evaluated by an AVL Fuel Meter working on the Bosch Tube principle.
Technical Paper

Investigation of Mixture Formation Process in a HDDI Diesel Engine by CFD and Imaging Technique

2005-04-11
2005-01-1918
The paper aims at providing information about the spray structure and its evolution within the combustion chamber of a heavy duty direct injection (HDDI) diesel engine. The spray penetration is investigated, firstly under quiescent conditions, injecting the fuel in a vessel under ambient temperature and controlled back pressure by both numerical and experimental analyses using the STAR-CD code and the imaging technique, respectively. Experimental results of fuel injection rate, fuel penetration, and spray cone angle are used as initial conditions to the code and for the comparison of predictions. The experimental investigation is carried out using a mechanical injection pump equipped by the heavy duty eight cylinder engine. Only one of its plungers has been activated and the fuel is discharged through a seven holes mechanical injector, 0.40 mm in diameter.
Technical Paper

Multidimensional Modeling of Advanced Diesel Combustion System by Parallel Chemistry

2005-04-11
2005-01-0201
In the present paper the combustion process in a modern second generation Common Rail Diesel engine for light duty application is experimentally and numerically investigated. An improved version of the KIVA3V-Release 2 code was used for the simulations. To model the combustion process, a detailed kinetic scheme involving 57 species and 290 equations, based on the n-heptane combustion, was used, interfacing the KIVA3V code with the CHEMKIN-II chemistry package. The full set of equations is concurrently solved in each computational cell by different solvers with the final aim of obtaining a locally adaptative code: local choices are undertaken in terms of time steps as well as in terms of the employed solvers. To reduce computational time, the code was parallelized: this parallelization is mainly focused on the chemical subroutines, considering that they are responsible for more than the 95% of the computing.
Technical Paper

Laser Diagnostic of Particles Exhaust Emission from Advanced Diesel Combustion Systems

2005-04-11
2005-01-0188
The effect of fuel injection strategy and charge dilution on NOx and soot emissions has been investigated with a modern DI diesel engine. Particulate mass has been measured by a standard smoke meter and soot particles have been characterized by means of time-resolved Laser Induced Incandescence (LII) at the exhaust of the engine. Two steady-state test points have been selected, representative of low and medium load conditions. The influence of the different engine management strategies has been assessed, highlighting the potential of unconventional operating modes to meet forthcoming emission limits.
Technical Paper

Downsizing of Common Rail D.I. Engines: Influence Of Different Injection Strategies on Combustion Evolution

2003-05-19
2003-01-1784
This paper refers to the experimental results obtained using two different 4 cylinder diesel engines, with total displacement respectively equal to 1.9l and 1.3l, both equipped with an advanced Common Rail system. An optically accessed prototype engine, having characteristics similar to the four cylinder engine, is used to visualize the in cylinder phenomena. Multidimensional simulations of the combustion and pollutants formation processes are performed, comparing the numerical predictions with the experimental data. By this way, integrating the 3D C.F.D. computations, the visualization techniques of the injection and combustion processes and the field measurements on the real engines, different settings of the multiple injection strategy have been analyzed.
Technical Paper

Fluid-Dynamic Analysis of the Intake System for a HDDI Diesel Engine by STAR-CD Code and LDA Technique

2003-03-03
2003-01-0002
The paper illustrates an experimental and numerical investigation of the flow generated by an intake port model for a heavy duty direct injection (HDDI) Diesel engine. Tests were carried out on a steady state air flow test rig to evaluate the global fluid-dynamic efficiency of the intake system, made by a swirled and a directed port, in terms of mass flow rate, flow coefficients and swirl number. In addition, because the global coefficients are not able to give flow details, the Laser Doppler Anemometry (LDA) technique was applied to obtain the local distribution of the air velocity within a test cylinder. The steady state air flow rig, made by a blower and the intake port model mounted on a plexiglas cylinder with optical accesses, was assembled to supply the actual intake flow rate of the engine, setting the pressure drop across the intake ports atûP=300 and 500 mm of H2O.
Technical Paper

In-cylinder Soot Evolution Analysis in a Transparent Research DI Diesel Engine Fed by Oxygenated Fuels

2002-10-21
2002-01-2851
This paper describes a characterisation of the combustion behaviour in an optical Common Rail diesel engine fed by different advanced fuels, via the application of the two-colour pyrometry technique. The acquired images were processed in order to calculate the instantaneous flame temperature and soot volume fraction. For the measurements, a single test point was chosen as representative of the reference four-cylinder engine performance in the European driven cycle ECE+EUDC. The test point was the 1500 rpm and 22 mm3/stroke of injected fuel volume, correspondent to the engine point of 1500rpm @ 5 bar of BMEP for the 4-cylinder engine of 1.9L of displacement. As general overview, the flame luminosity from combustion of the fuel injected during pilot injection was always below the threshold of sensitivity of the detection system.
Technical Paper

Potentiality of the Modern Engines Fed by New Diesel Fuels to Approach the Future European Emission Limits

2002-10-21
2002-01-2826
This paper reports some results on the performance of an advanced common rail (CR) DI diesel engine burning 12 model diesel fuels. The experiments were carried out within a co-operative research program “NeDeNeF” (New Diesel Engines and New Diesel Fuels), partly sponsored by the Commission of European Communities. Partners of the project with Istituto Motori (IM) were: FEV (Germany), VTT (Finland), NTUA (Greece), Brunel University (UK), Fortum (Finland), LAT (Greece) under the coordination of the IFP (France). The matrix of twelve fuels was prepared by the fuel producer partner (Fortum). The research program of the Diesel Engines and Fuels Department of Istituto Motori aimed at assessing the effect of fuel quality on exhaust emissions. The engine employed in the tests was a Fiat four-cylinder DI CR diesel engine, EURO3 version, of 1.9 litre, installed on Fiat Group class C Cars (1350kg of mass).
Technical Paper

Combustion Chamber Design Effects on D.I. Common Rail Diesel Engine Performance

2001-09-23
2001-24-0005
In the present paper the KIVA3V code is used to model the behaviour of different combustion chambers, to be used in Common Rail engines with a single displacement lower than 0.5l. Some design parameters have been chosen to evaluate their influence on the combustion patterns. The optimum levels of turbulence and air mean motion have been selected with reference to some specific points of the engine map, managed by mean of multiple injection. Therefore the different combustion chambers geometries have been numerically investigated in terms of fluidynamic behaviour as well as in terms of combustion evolution. After that some chamber geometries, especially suitable for the second-generation common rail engines, have been selected.
Technical Paper

Investigation of the intake tumble flow in a prototype GDI engine using a steady-state test rig

2001-09-23
2001-24-0022
An experimental and numerical investigation, using the Laser Doppler Anemometry (LDA) technique and a 3D fluid-dynamic code (KIVA 3V), was carried out in a prototype engine under steady-state conditions. The aim of the present activity was the flow field characterization and the effect of the intake geometry on the in-cylinder tumble flow. A new steady flow test rig designed for capturing the tumble motion within a test cylinder, made by a blower and an engine head, was assembled to simulate the intake flow. The engine head was mounted on an aluminum cylinder, having the same bore as the real engine. The cylinder was provided with optical accesses on the periphery and a flat optical window located at the bottom to a depth equal to the stroke of the engine. The cylinder was also equipped with two cylindrical ducts, used as air outflow ports.
Technical Paper

Design of a small displacement transparent research engine equipped with a common-rail diesel injection system

2001-09-23
2001-24-0021
This paper describes the project of a "small' single-cylinder direct injection diesel engine (300 cc). It is equipped with optical accesses to analyze the diesel combustion process employing the most recent optical diagnostic techniques. The injection system used is a second-generation common- rail system. The optical accesses are placed on the piston and on the cylinder wall.
Technical Paper

Combustion Process Management in Common Rail DI Diesel Engines by Multiple Injection

2001-09-23
2001-24-0007
The improvements of the solenoid injector and of the Electronic Control Unit of the present Common Rail injection system (C.R.) allow the use of multiple sequential injections. Thanks to this feature this advanced Common Rail system is capable to perform up to five consecutive injections in one engine cycle thus improving control of the combustion process. In particular, in some operating conditions, the activation of a small injection after the main one allows the oxidation of the soot produced in the previous stages of the combustion process, without increasing nitrogen oxide emissions. This paper describes the experimental results obtained with the application of a prototype of this advanced Common Rail system both to a Fiat L4 1.9 JTD 8 valve engine and to a single-cylinder prototype, having the same combustion system and large optical access allowing investigation of the injection and combustion processes.
X