Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Study of the Portability of a 3D CFD Model for the Dynamics of Sprays Issuing from Multi-Hole GDI Injectors

2011-08-30
2011-01-1897
Three high pressure multi-hole GDI injectors, one manufactured by Continental, two manufactured by Bosch, are experimentally characterized under various injection strategies in terms of instantaneous mass flow rate and fuel dispersion. Spray visualization within an optically accessible pressure vessel allows the measurement of the single jet cone angle and penetration length. A portable numerical model for the issuing spray dynamics is developed within the AVL Fire code, exploiting a log-normal distribution for the initial droplets diameter, whose expected value and variance are properly defined as a function of the main physical parameters. Tuning of the entering constants is realized by means of an automatic optimization procedure. An example of application of the spray model within a 3D simulation of the in-cylinder process of a GDI engine is presented. Effects of splitting injection into two successive events are discussed.
Journal Article

Light Duty Diesel Engine: Optimization of Performances, Noxious Emission and Radiated Noise

2009-11-03
2009-32-0105
The paper aims at performing an environmental and energetic optimization of a naturally aspirated, light-duty direct injection (DI) diesel engine, equipped with a Common Rail injection system. Injection modulation into up to three pulses is considered starting from an experimental campaign conducted under non-evaporative conditions in a quiescent optically-accessible cylindrical vessel containing nitrogen at different densities. The engine performances in terms of power and emitted NOx and soot are reproduced by multidimensional modelling of the in-cylinder processes. The radiated noise is evaluated by resorting to a recently developed methodology, based on the decomposition of the CFD 3D computed in-cylinder pressure signal. Once validated, both the CFD and the acoustic procedures are applied to the simulation of the prototype engine and are coupled to an external optimizer with the aim of minimizing fuel consumption, pollutant emissions and radiated noise.
Technical Paper

Ignition and Extinction Characteristics of Three Way Catalysts

2009-09-13
2009-24-0152
Vehicle exhaust emission control systems are most often operated under transient conditions as inlet gas species concentrations, temperature and mass flow rate vary in accordance with the driving conditions. The main objective of this article is to study the ignition and extinction phenomena associated with the reactions that occur in three way catalysts (TWC), in particular to evaluate the dependence of the ignition and extinction of the TWC reactions on the precious metal loading (PML). To this end, we report here transient experimental data for two ceramic TWC with different PML, one referred to as TWC-L (low PML) and the other as TWC-H (high PML). The present measurements were carried out on a vehicle equipped with a 2.8 liter V6 spark ignition engine that has multipoint fuel injection. During the experiments, different TWC were in turn placed in the so called under-floor position (about 1 m away from the engine) replacing the original TWC installed on the vehicle.
Technical Paper

Numerical Study of a GDI Engine Operating in the Jet Guided Combustion Mode

2009-09-13
2009-24-0021
The work relates to the use of multidimensional modelling as a tool for improving the robustness of combustion of a Gasoline Direct Injection (GDI) Spark Ignition (SI) engine. A procedure is assessed for the prediction of the thermo-fluid-dynamic processes occurring in a single-cylinder, four-stroke engine, characterised by a bore-to-stroke ratio close to the unity, and a pent-roof head with four valves. The engine is at a design stage, under development for application on two wheels vehicles. A new generation six-holes Bosch injector is considered as realising a jet guided combustion mode. This last is preferred for its potential in realising effective charge stratification and great combustion stability under various operating conditions. The three-dimensional (3D) numerical model is developed within the AVL FIRE™ software environment.
Technical Paper

FE Fluid-Structure Interaction/Experimental Transmission Loss Factor Comparison of an Exhaust System

2005-09-11
2005-24-019
The purpose of this paper is to present a 3-D Finite Element Method able to simulate and predict exhaust transmission noise. The simulation takes into account fluid flow pulsation, aeroacoustic noise sources, flow-induced structural vibration as well as noise radiation in the far field of the exhaust system of a single-cylinder diesel engine. In order to study problems on fluid-structure interaction a 3-dimensional model has been created through a FEM simulation. The study includes the calculation of the transmission loss factor and the determination of which modes dominate the noise transmission. Simultaneously, an experimental measurement has been performed, in order to determine the transmission loss factor of the tested system. Finally, an experimental-numerical comparison has been performed. Experimental and numerical results have been compared and a good agreement has been found.
Technical Paper

Some Insight on Premixed Combustion in Diesel Engine With Late Injection: The Influence of Air and Injection Parameters

2005-09-11
2005-24-047
Aim of the present paper was an evaluation of the importance of some engine parameters (intake gas flow and injection parameters) on the approach of Premixed Low Temperature Combustion (PLTC) conditions with the same efficiency of a conventional diesel cycle and ultra-low pollutant emissions. The results have demonstrated that the control of PLTC mode is very difficult and the engine parameters play a critical role on the exhaust pollutant emissions, indicating that further massive research activities are needed to reach reliable practical applications.
Technical Paper

Analysis of a High Pressure Diesel Spray at High Pressure and Temperature Environment Conditions

2005-04-11
2005-01-1239
This paper illustrates the results of an experimental characterization of a high pressure diesel spray injected by a common rail (CR) injection system both under non-evaporative and evaporative conditions. Tests have been made injecting the fuel with a single hole injector having a diameter of 0.18 mm with L/D=5.56. The fuel has been sprayed at 60, 90 and 120 MPa, with an ambient pressure ranging between 1.2 to 5.0 MPa. The spray evolution has been investigated, by the Mie scattering technique, illuminating the fuel jet and acquiring single shot images by a CCD camera. Tests under non-evaporative conditions have been carried out in an optically accessible high pressure vessel filled with inert gas (N2) at diesel-like density conditions. The instantaneous fuel injection rate, obtained with a time resolution of 10 microseconds, has been also evaluated by an AVL Fuel Meter working on the Bosch Tube principle.
Technical Paper

Investigation of Mixture Formation Process in a HDDI Diesel Engine by CFD and Imaging Technique

2005-04-11
2005-01-1918
The paper aims at providing information about the spray structure and its evolution within the combustion chamber of a heavy duty direct injection (HDDI) diesel engine. The spray penetration is investigated, firstly under quiescent conditions, injecting the fuel in a vessel under ambient temperature and controlled back pressure by both numerical and experimental analyses using the STAR-CD code and the imaging technique, respectively. Experimental results of fuel injection rate, fuel penetration, and spray cone angle are used as initial conditions to the code and for the comparison of predictions. The experimental investigation is carried out using a mechanical injection pump equipped by the heavy duty eight cylinder engine. Only one of its plungers has been activated and the fuel is discharged through a seven holes mechanical injector, 0.40 mm in diameter.
Technical Paper

Multidimensional Modeling of Advanced Diesel Combustion System by Parallel Chemistry

2005-04-11
2005-01-0201
In the present paper the combustion process in a modern second generation Common Rail Diesel engine for light duty application is experimentally and numerically investigated. An improved version of the KIVA3V-Release 2 code was used for the simulations. To model the combustion process, a detailed kinetic scheme involving 57 species and 290 equations, based on the n-heptane combustion, was used, interfacing the KIVA3V code with the CHEMKIN-II chemistry package. The full set of equations is concurrently solved in each computational cell by different solvers with the final aim of obtaining a locally adaptative code: local choices are undertaken in terms of time steps as well as in terms of the employed solvers. To reduce computational time, the code was parallelized: this parallelization is mainly focused on the chemical subroutines, considering that they are responsible for more than the 95% of the computing.
Technical Paper

Laser Diagnostic of Particles Exhaust Emission from Advanced Diesel Combustion Systems

2005-04-11
2005-01-0188
The effect of fuel injection strategy and charge dilution on NOx and soot emissions has been investigated with a modern DI diesel engine. Particulate mass has been measured by a standard smoke meter and soot particles have been characterized by means of time-resolved Laser Induced Incandescence (LII) at the exhaust of the engine. Two steady-state test points have been selected, representative of low and medium load conditions. The influence of the different engine management strategies has been assessed, highlighting the potential of unconventional operating modes to meet forthcoming emission limits.
Technical Paper

Downsizing of Common Rail D.I. Engines: Influence Of Different Injection Strategies on Combustion Evolution

2003-05-19
2003-01-1784
This paper refers to the experimental results obtained using two different 4 cylinder diesel engines, with total displacement respectively equal to 1.9l and 1.3l, both equipped with an advanced Common Rail system. An optically accessed prototype engine, having characteristics similar to the four cylinder engine, is used to visualize the in cylinder phenomena. Multidimensional simulations of the combustion and pollutants formation processes are performed, comparing the numerical predictions with the experimental data. By this way, integrating the 3D C.F.D. computations, the visualization techniques of the injection and combustion processes and the field measurements on the real engines, different settings of the multiple injection strategy have been analyzed.
Technical Paper

Fluid-Dynamic Analysis of the Intake System for a HDDI Diesel Engine by STAR-CD Code and LDA Technique

2003-03-03
2003-01-0002
The paper illustrates an experimental and numerical investigation of the flow generated by an intake port model for a heavy duty direct injection (HDDI) Diesel engine. Tests were carried out on a steady state air flow test rig to evaluate the global fluid-dynamic efficiency of the intake system, made by a swirled and a directed port, in terms of mass flow rate, flow coefficients and swirl number. In addition, because the global coefficients are not able to give flow details, the Laser Doppler Anemometry (LDA) technique was applied to obtain the local distribution of the air velocity within a test cylinder. The steady state air flow rig, made by a blower and the intake port model mounted on a plexiglas cylinder with optical accesses, was assembled to supply the actual intake flow rate of the engine, setting the pressure drop across the intake ports atûP=300 and 500 mm of H2O.
Technical Paper

In-cylinder Soot Evolution Analysis in a Transparent Research DI Diesel Engine Fed by Oxygenated Fuels

2002-10-21
2002-01-2851
This paper describes a characterisation of the combustion behaviour in an optical Common Rail diesel engine fed by different advanced fuels, via the application of the two-colour pyrometry technique. The acquired images were processed in order to calculate the instantaneous flame temperature and soot volume fraction. For the measurements, a single test point was chosen as representative of the reference four-cylinder engine performance in the European driven cycle ECE+EUDC. The test point was the 1500 rpm and 22 mm3/stroke of injected fuel volume, correspondent to the engine point of 1500rpm @ 5 bar of BMEP for the 4-cylinder engine of 1.9L of displacement. As general overview, the flame luminosity from combustion of the fuel injected during pilot injection was always below the threshold of sensitivity of the detection system.
Technical Paper

Potentiality of the Modern Engines Fed by New Diesel Fuels to Approach the Future European Emission Limits

2002-10-21
2002-01-2826
This paper reports some results on the performance of an advanced common rail (CR) DI diesel engine burning 12 model diesel fuels. The experiments were carried out within a co-operative research program “NeDeNeF” (New Diesel Engines and New Diesel Fuels), partly sponsored by the Commission of European Communities. Partners of the project with Istituto Motori (IM) were: FEV (Germany), VTT (Finland), NTUA (Greece), Brunel University (UK), Fortum (Finland), LAT (Greece) under the coordination of the IFP (France). The matrix of twelve fuels was prepared by the fuel producer partner (Fortum). The research program of the Diesel Engines and Fuels Department of Istituto Motori aimed at assessing the effect of fuel quality on exhaust emissions. The engine employed in the tests was a Fiat four-cylinder DI CR diesel engine, EURO3 version, of 1.9 litre, installed on Fiat Group class C Cars (1350kg of mass).
Technical Paper

Multidimensional Modelling and Spectroscopic Analysis of the Soot Formation Process in a Diesel Engine

2002-07-09
2002-01-2161
Multidimensional simulation of the soot formation process in a diesel engine is realised exploiting quantitative measurements of the soot volume fraction and diameter obtained by optical techniques. Broadband extinction and scattering measurements are performed on an optically accessible 4-stroke engine where a forced air motion allows a strong prevalence of the premixed stage of combustion with respect to the non-premixed one. Two semi-empirical models for soot formation are tested in the numerical simulation, which is performed using a customized version of the KIVA-3 code. The need of furnishing coherent values of the soot particles density and mean diameter to the one of the two models requiring this kind of information, is highlighted and demonstrated to be crucial in avoiding over-prediction of the soot concentration.
Technical Paper

Spectral Analysis of Combustion Process of Common Rail Diesel Engine

2002-05-06
2002-01-1634
Polychromatic extinction and chemiluminescence techniques, from ultraviolet to visible, were applied in an optical diesel engine, in order to analyze the temporal and spatial evolution of a high pressure fuel jet interacting with a swirling air motion. A fully flexible Common Rail fuel injection system equipped with a single hole nozzle was used. The experiments were performed at fixed engine speed and air/fuel ratio for three injection strategies. The first one consisted of a main injection to compare with those operating at low pressure injection. The other ones were based on a pilot and main injections, typical of current direct injection diesel engines, with different dwell time. A detailed investigation of the mixture formation process inside the combustion chamber during the ignition delay time was performed. The liquid and vapor fuel distribution in the combustion chamber was obtained analyzing the polychromatic extinction spectra.
Technical Paper

Absolute NO and OH Concentrations During Diesel Combustion Process by Multiwavelength Absorption Spectroscopy

2002-03-04
2002-01-0892
Conventional methods to measure gas concentrations and, in particular, NO are typically based on sampling by valve, sample treatment and subsequent analysis. These methods suffer low spatial and temporal resolution. The introduction of high energy lasers in combination with fast detection systems allowed to detect the NO distribution inside optically accessible Diesel engines. In this paper, a high spatial and temporal resolution in-situ technique based on ultraviolet - visible absorption spectroscopy is proposed. The characterization of the combustion process by the detection of gaseous compounds from the start of combustion until the exhaust phase was performed. In particular, this technique allows the simultaneous detection of NO and OH absolute concentrations inside an optically accessible Diesel combustion chamber.
Technical Paper

Numerical Study Towards Smoke-Less and NOx-Less HSDI Diesel Engine Combustion

2002-03-04
2002-01-1115
This paper explores the possibility to extend the low-temperature combustion concept developed for low load conditions to medium load conditions of HSDI DI Diesel engines. The aim is to understand which is the limit of conventional Diesel combustion towards smoke-lees and NOx-less conditions. The present research is based on numerical simulations performed by using the Kiva-3 code updated with physical sub-models. The combined influence of EGR cooling and EGR rate on combustion characteristics and emission formation is analyzed. Then, possible improvements to mixture formation are discussed with particularly emphasis on the use of multiple injection. The calculations show that smoke-less conditions by low-temperature combustion cannot be achieved at medium load and therefore a great role is played by mixture formation.
Technical Paper

Combustion Chamber Design Effects on D.I. Common Rail Diesel Engine Performance

2001-09-23
2001-24-0005
In the present paper the KIVA3V code is used to model the behaviour of different combustion chambers, to be used in Common Rail engines with a single displacement lower than 0.5l. Some design parameters have been chosen to evaluate their influence on the combustion patterns. The optimum levels of turbulence and air mean motion have been selected with reference to some specific points of the engine map, managed by mean of multiple injection. Therefore the different combustion chambers geometries have been numerically investigated in terms of fluidynamic behaviour as well as in terms of combustion evolution. After that some chamber geometries, especially suitable for the second-generation common rail engines, have been selected.
Technical Paper

Investigation of the intake tumble flow in a prototype GDI engine using a steady-state test rig

2001-09-23
2001-24-0022
An experimental and numerical investigation, using the Laser Doppler Anemometry (LDA) technique and a 3D fluid-dynamic code (KIVA 3V), was carried out in a prototype engine under steady-state conditions. The aim of the present activity was the flow field characterization and the effect of the intake geometry on the in-cylinder tumble flow. A new steady flow test rig designed for capturing the tumble motion within a test cylinder, made by a blower and an engine head, was assembled to simulate the intake flow. The engine head was mounted on an aluminum cylinder, having the same bore as the real engine. The cylinder was provided with optical accesses on the periphery and a flat optical window located at the bottom to a depth equal to the stroke of the engine. The cylinder was also equipped with two cylindrical ducts, used as air outflow ports.
X