Refine Your Search

Topic

Search Results

Standard

Overpressurization Release Devices

2024-01-16
WIP
ARP1322D
This SAE Aerospace Recommended Practice (ARP) specifies the minimum design and qualification test recommendations for aircraft wheel overpressurization release devices used with tubeless aircraft tires to protect from possible explosive failure of the contained inflation chamber due to overinflation. Devices of this type provide a means, but not the only means, for showing compliance to Subsection 25.731(d) of Part 25 of Title 14 of the Code of Federal Regulations. Devices of this type will not protect against flash fire explosive conditions within the inflation chamber which may occur due to extremely overheated brakes or spontaneous combustion caused by a foreign substance within the inflation chamber. To help protect against this condition, nitrogen (N2) or other inert gas should be used for inflation.
Standard

Maintainability Recommendations for Aircraft Wheel and Hydraulically Actuated Brake Design

2022-07-13
WIP
ARP813D

This SAE Aerospace Recommended Practice (ARP) recommends the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on other factors, such as, cost, weight, reliability, and compatibility with other systems should be weighed before the incorporation of any of these maintainability features into the design.

Standard

Aircraft Brake Temperature Monitoring

2021-10-28
CURRENT
ARP6812
This SAE Aerospace Recommended Practice (ARP) provides recommendations for the function, design, construction, and testing of an on-aircraft Brake Temperature Monitoring System (BTMS), sometimes referred to as a Brake Temperature Indication System (BTIS). NOTE: This ARP does not address: Cockpit ergonomics and Aircraft operating procedures. Various handheld methods of temperature sensing or readouts, as these are not associated with transport aircraft during normal operation. Temperature sensitive paints as a means to indicate exceedance of a landing gear axle temperature threshold due to brake temperature.
Standard

Minimum Environmental Performance Standard for Parts 23, 25, 27, and 29 Aircraft Wheels Brakes, and Wheel and Brake Assemblies

2021-04-27
WIP
AS6961
This SAE Aerospace Standard (AS) prescribes the Minimum Performance Standards (MPS) for environmental conditions that wheel, brake, and wheel and brake assemblies to be used on aircraft certificated under 14 CFR Parts 23, 25, 27, and 29. The environmental requirements in this document shall be used in conjunction with other MPS defined in Technical Standard Orders for the applicable equipment.
Standard

Thermal Sensitive Inflation Pressure Release Devices for Tubeless Aircraft Wheels

2020-11-25
WIP
AS707D
The focus of this SAE Aerospace Standard (AS) is the integration of thermally actuated pressure release devices, hereafter referred to as fuse plugs, with the wheel and brake assembly. It does not address the manufacturing, quality or acceptance test requirements pertaining to the production of these fuse plugs. It establishes minimum design, installation, qualification, and operational requirements for fuse plugs which are used only in tubeless tire type aircraft braked wheels. Fuse plugs are designed to completely release the contained inflation pressure from a tubeless tire and wheel assembly when brake generated heat causes the tire or wheel to exceed a safe temperature level. The objective is to prevent tire or wheel rupture due to brake generated heat that could cause an unsafe condition for personnel or the aircraft. (Reference: U.S. Department of Transportation FAA Advisory Circular No. 23-17C; Title 14, Code of Federal Regulations (14 CFR) Part 25.735 (j); U.S.
Standard

Disposition of Damaged Wheels Involved in Accidents/Incidents

2020-09-17
CURRENT
ARP5600
This SAE Aerospace Recommended Practice (ARP) establishes a procedure for disposition of aircraft wheels that have been involved in accidents/incidents or have been exposed to overheat conditions or overload conditions from loss of adjacent tire pressure (paired wheels) or wheel tie bolts.
Standard

Information on Parking Brake Systems

2020-09-16
CURRENT
AIR6441
This SAE Aerospace Information Report (AIR) provides information on the parking brake system design for a variety of aircraft including part 23, 25, 27, and 29. The document includes a discussion of key technical issues with parking brakes. This document does NOT provide recommended practices for parking brake system design.
Standard

Wheel Roll on Rim Criteria for Aircraft Applications

2019-02-15
CURRENT
ARP1786C
This SAE Aerospace Recommended Practice (ARP) is to provide a recommended minimum laboratory roll performance for main landing gear aircraft wheels without tires installed and applies to both bolted and lock-ring wheel designs for FAA Part 25 and military aircraft main wheels (not required for any nose wheels or main wheels on FAA Part 23, 27 or 29 applications).
Standard

Maintainability Recommendations for Aircraft Wheel and Hydraulically Actuated Brake Design

2019-02-15
CURRENT
ARP813C
This SAE Aerospace Recommended Practice (ARP) recommends the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on other factors, such as, cost, weight, reliability, and compatibility with other systems should be weighed before the incorporation of any of these maintainability features into the design.
Standard

Thermal Sensitive Inflation Pressure Release Devices for Tubeless Aircraft Wheels

2019-02-15
CURRENT
AS707C
The focus of this SAE Aerospace Standard (AS) is the integration of thermally actuated pressure release devices, hereafter referred to as fuse plugs, with the wheel and brake assembly. It does not address the manufacturing, quality or acceptance test requirements pertaining to the production of these fuse plugs. It establishes minimum design, installation, qualification, and operational requirements for fuse plugs which are used only in tubeless tire type aircraft braked wheels. Fuse plugs are designed to completely release the contained inflation pressure from a tubeless tire and wheel assembly when brake generated heat causes the tire or wheel to exceed a safe temperature level. The objective is to prevent tire or wheel rupture due to brake generated heat that could cause an unsafe condition for personnel or the aircraft. (Reference: U.S. Department of Transportation FAA Advisory Circular No. 23-17C; Title 14, Code of Federal Regulations (14 CFR) Part 25.735 (j); U.S.
Standard

Information on Electric Brakes

2019-02-15
CURRENT
AIR5937
This SAE Aerospace Information Report (AIR) describes the design, operation, and attributes of electrical braking systems for both military and commercial aircraft. At this time, the document focuses only on brakes utilizing electromechanical actuators (EMAs), as that is the present state of the art. As such, the discussions herein assume that EMAs can simply replace the hydraulic actuation portion of typical brake system leaving things such as the wheel and heat sink unchanged. Furthermore, the document provides detail information from the perspective of brake system design and operation. The document also addresses failure modes, certification issues, and past development efforts. Details on the design and control of electric motors, gear train design, ball or roller screw selection are available in the reference documents and elsewhere, but are outside the scope of this document.
Standard

Automatic Braking Systems

2016-01-25
CURRENT
ARP1907C
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Automatic Braking Systems

2014-08-20
HISTORICAL
ARP1907B
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2013-12-04
WIP
AS6289
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This test is designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions.
Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2013-03-11
WIP
AIR5567B
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating envirnoment.
Standard

Skid Control System Vibration Survey

2012-09-05
CURRENT
AIR764D
This technical report documents three surveys to determine realistic vibration requirements for skid control systems specifications and obtain updated vibration information for locations in aircraft where skid control system components are mounted.
X