Refine Your Search

Search Results

Viewing 1 to 19 of 19
Journal Article

External Biofidelity Evaluation of Pedestrian Leg-Form Impactors

2017-03-28
2017-01-1450
Current state-of-the-art vehicles implement pedestrian protection features that rely on pedestrian detection sensors and algorithms to trigger when impacting a pedestrian. During the development phase, the vehicle must “learn” to discriminate pedestrians from the rest of potential impacting objects. Part of the training data used in this process is often obtained in physical tests utilizing legform impactors whose external biofidelity is still to be evaluated. This study uses THUMS as a reference to assess the external biofidelity of the most commonly used impactors (Flex-PLI, PDI-1 and PDI-2). This biofidelity assessment was performed by finite element simulation measuring the bumper beam forces exerted by each surrogate on a sedan and a SUV. The bumper beam was divided in 50 mm sections to capture the force distribution in both vehicles. This study, unlike most of the pedestrian-related literature, examines different impact locations and velocities.
Technical Paper

Comprehensive Computational Rollover Sensitivity Study Part 2: Influence of Vehicle, Crash, and Occupant Parameters on Head, Neck, and Thorax Response

2011-04-12
2011-01-1115
Fatalities resulting from vehicle rollover events account for over one-third of all U.S. motor vehicle occupant fatalities. While a great deal of research has been directed towards the rollover problem, few studies have attempted to determine the sensitivity of occupant injury risk to variations in the vehicle (roof strength), crash (kinematic conditions at roof-to-ground contact), and occupant (anthropometry, position and posture) parameters that define the conditions of the crash. A two-part computational study was developed to examine the sensitivity of injury risk to changes in these parameters. The first part of this study, the Crash Parameter Sensitivity Study (CPSS), demonstrated the influence of parameters describing the vehicle and the crash on vehicle response using LS-DYNA finite element (FE) simulations.
Technical Paper

Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading

2009-11-02
2009-22-0001
This study evaluated the response of restrained post-mortem human subjects (PMHS) in 40 km/h frontal sled tests. Eight male PMHS were restrained on a rigid planar seat by a custom 3-point shoulder and lap belt. A video motion tracking system measured three-dimensional trajectories of multiple skeletal sites on the torso allowing quantification of ribcage deformation. Anterior and superior displacement of the lower ribcage may have contributed to sternal fractures occurring early in the event, at displacement levels below those typically considered injurious, suggesting that fracture risk is not fully described by traditional definitions of chest deformation. The methodology presented here produced novel kinematic data that will be useful in developing biofidelic human models.
Technical Paper

Thoracic Response to Shoulder Belt Loading: Investigation of Chest Stiffness and Longitudinal Strain Pattern of Ribs

2009-04-20
2009-01-0384
Two post-mortem human subjects were subjected to dynamic, non-injurious (up to 20% chest deflection) anterior shoulder belt loading at 0.5 m/s and 0.9 m/s loading rates. The human surrogates were mounted to a stationary apparatus that supported the spine and shoulder in a configuration comparable to that achieved in a 48 km/h sled test at the time of maximum chest deformation. A hydraulically driven shoulder belt was used to load the anterior thorax which was instrumented with a load cell for measuring reaction force and uniaxial strain gages at the 4th and 8th ribs. In addition, the deformation of the chest was measured using a 16- camera Vicon 3D motion capture system. In order to investigate the chest deformation pattern and ribcage loading in greater detail, a human finite element (FE) model of the thorax was used to simulate the tests.
Technical Paper

Assessment of 3 and 6-Year-Old Neck Injury Criteria Based on Field Investigation, Modeling, and Sled Testing

2006-04-03
2006-01-0253
The intent of this study was to compare the neck responses measured from the Hybrid III 3 and 6-year-old ATDs in laboratory testing to injuries sustained by three children in a field crash and investigate the appropriateness of recommended in-position neck injury assessment reference values (IARVs), and the regulated out-of-position (OOP) IARVs specified in FMVSS 208 for the Hybrid III 3 and 6-year-old ATDs. This paper principally reports on apparent artifacts associated with the Hybrid III 3 and 6-year-old ATDs, which complicated investigating the appropriateness of the in-position and out-of-position neck IARVs. In tests using 3-point belt restraints, these apparent artifacts included: 1) High neck extension moments, which produced the peak Nij values, without significant observed relative head-to-neck motion, 2) Neck tension forces well in excess of the IARVs that occurred when the ATD's chin contacted the chest.
Technical Paper

Influence of Vehicle Body Type on Pedestrian Injury Distribution

2005-04-11
2005-01-1876
Pedestrian impact protection has been a growing area of research over the past twenty or more years. The results from many studies have shown the importance of providing protection to vulnerable road users as a means of reducing roadway fatalities. Most of this research has focused on the vehicle fleet as a whole in datasets that are dominated by passenger cars (cars). Historically, the influence of vehicle body type on injury distribution patterns for pedestrians has not been a primary research focus. In this study we used the Pedestrian Crash Data Study (PCDS) database of detailed pedestrian crash investigations to identify how injury patterns differ for pedestrians struck by light trucks, vans, and sport utility vehicles (LTVs) from those struck by cars. AIS 2+ and 3+ injuries for each segment of vehicles were mapped back to both the body region of the pedestrian injured and the vehicle source linked to that injury in the PCDS database.
Technical Paper

The Effects of Head Padding in Rear Facing Child Restraints

2005-04-11
2005-01-1839
Child restraint head padding is designed for the child's comfort under normal use. Under vehicle crash conditions, however, the padding in a rear facing child restraint may not be designed to sufficiently absorb impact energy. The objective of this paper is to evaluate the effects of various head padding conditions in rear facing child restraints in frontal impacts. Five sled tests were performed to measure the response of a CRABI 12 month dummy to different padding conditions in a rear facing child restraint. Static loading tests were performed on the padding materials. Results show that using padding of low stiffness increases head acceleration and HIC15 values.
Technical Paper

Application of a Finite Element-Based Human Arm Model for Airbag Interaction Analysis

2004-06-15
2004-01-2147
Interaction of the human arm and deploying airbag has been studied in the laboratory using post mortem human subjects (PMHS). These studies have shown how arm position on the steering wheel and proximity to the airbag prior to deployment can influence the risk of forearm bone fractures. Most of these studies used older driver airbag modules that have been supplanted by advanced airbag technology. In addition, new numerical human body models have been developed to complement, and possibly replace, the human testing needed to evaluate new airbag technology. The objective of this study is to use a finite element-based numerical (MADYMO) model, representing the human arm, to evaluate the effects of advanced driver airbag parameters on the injury potential to the bones of the forearm. The paper shows how the model is correlated to Average Distal Forearm Speed (ADFS) and arm kinematics from two PMHS tests.
Technical Paper

Assessment of the Thor and Hybrid III Crash Dummies: Steering Wheel Rim Impacts to the Upper Abdomen

2004-03-08
2004-01-0310
This investigation explored THOR's force-deflection response to upper abdomen/lower ribcage steering wheel rim impacts in comparison to the Hybrid III and cadaver test subjects. The stationary subjects were impacted by a ballasted surrogate wheel propelled at 4 m/s, a test condition designed to approximate the upper abdomen impacting a steering wheel rim in a frontal crash. Both the standard THOR and the Hybrid III crash dummies were substantially stiffer than the cadavers. Removing THOR's torso skin and foam from the upper abdomen and replacing the standard Hybrid III abdomen with a prototype gel-filled unit produced force-deflection results that were more similar to the cadavers. THOR offers advantages over the Hybrid III because of its ability to measure abdominal deflection. THOR, with modification, would be a useful instrument with which to assess the crashworthiness of steering assemblies and restraint systems in frontal crashes.
Technical Paper

Simulation of Occipitoatlantoaxial Injury Utilizing a MADYMO Model

2004-03-08
2004-01-0326
Injuries of the Occipitoatlantoaxial (Occ-C2) region (also known as atlanto-occipital injuries) are the most common form of cervical injury in children aged ten years and younger. The crash studied in this paper is unique in that there were three children ages 3, 6 and 7 involved in a frontal crash with a delta V of 28mph with each child receiving a nonfatal Occ-C2 injury of varying degrees. The 3 and 6 year-old children were remarkably similar in height and weight to the 3 and 6 year-old Hybrid III ATD's. Also, unique to this case is the fact that the right rear 6 year-old occupant likely sustained an Occ-C2 injury prior to impact with the frame of the front passenger seat. This crash environment was recreated utilizing MADYMO occupant simulation software. The models for the Hybrid III 3 and 6 year-old ATDs were used to represent the occupants in this crash.
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

The Utility of Hybrid III and THOR Chest Deflection for Discriminating Between Standard and Force-Limiting Belt Systems

2003-10-27
2003-22-0013
Recent field data studies have shown that force-limiting belt systems reduce the occurrence of thoracic injuries in frontal crashes relative to standard (not force-limiting) belt systems. Laboratory cadaver tests have also shown reductions in trauma, as well as in chest deflection, associated with a force-limiting belt. On the other hand, tests using anthropomorphic test devices (ATDs) have shown trends indicating increased, decreased, or unchanged chest deflection. This paper attempts to resolve previous experimental studies by comparing the anterior-posterior and lateral chest deflections measured by the THOR and Hybrid III (H-III) dummies over a range of experimental conditions. The analysis involves nineteen 48-km/h and 57-km/h sled tests utilizing force-limiting and standard seat belt systems, both with an air bag. Tests on both the driver side and the passenger side are considered.
Technical Paper

Injury Risk Functions for the 5th Percentile Female Upper Extremity

2003-03-03
2003-01-0166
The widespread implementation of air bags has increased the incidence of upper extremity injuries in the automotive crash environment. The first step in reducing these injuries is to determine applicable upper extremity injury criteria. The purpose of this paper is to develop injury risk functions for the fifth percentile female forearm, humerus, wrist, and elbow. Injury tolerance data for each anatomical region were gathered from experiments with controlled impact loading of disarticulated small female cadaver upper extremities. This technique allowed for the applied load to be directly quantified. All data were mass scaled to the fifth percentile female. In order to develop the risk functions, the logit distribution was integrated for the uncensored data, while logistic regression and generalized estimating equations statistical analysis techniques were used for censored data.
Technical Paper

The Effects of Vehicle Seat Belt Parameters on the Injury Risk for Children in Booster Seats

2003-03-03
2003-01-0500
The correct restraint for children, age 4-10 years, is a booster seat restrained by the vehicle's seat belt system. The goal of this study is to investigate the effects of misuse of the restraint system by varying initial seat belt slack and to investigate the effects of modern countermeasures, like force limiting belts and pretensioners, on the injury risk of young children. A multi-body model of a Hybrid III 6-year old dummy positioned in a booster seat and restrained by the car seat belt was developed using MADYMO and validated using sled tests. As anticipated, adding initial slack resulted in higher peak accelerations and to an increase in forces and moments in the neck, both factors increasing the injury risk significantly. The countermeasures pretensioning and force limiting prove to be useful in lowering peak values but a high risk of injury persists. A combination of pretension and force limiting provides the safest restraint for this setup.
Technical Paper

ROLLOVER: A METHODOLOGY FOR RESTRAINT SYSTEM DEVELOPMENT

2001-06-04
2001-06-0217
Concern about crash conditions other than frontal and side crashes has accelerated restraint development with respect to rollover events. Previous analysis of rollover field data indicates the high probability of ejection and consequent serious injury or death to unbelted occupants. Partial ejection of belted occupants may also occur. Restraint development has focused on belt technologies and more recently, airbag systems as a method to reduce ejection and injury risk. Effective restraint development for these emerging technologies should consider a combined approach of field injury data analysis, computer simulation of rollover, corresponding validated test data and hardware development techniques. First, crash data was analyzed for identified rollover modes (crash sequences) and injured body regions. This helped to determine possible restraint interventions.
Technical Paper

Displacement Measurements in the Hybrid III Chest

2001-03-05
2001-01-0118
This paper presents an analysis of the displacement measurement of the Hybrid III 50th percentile male dummy chest in quasistatic and dynamic loading environments. In this dummy, the sternal chest deformation is typically characterized using a sliding chest potentiometer, originally designed to measure inward deflection in the central axis of the dummy chest. Loading environments that include other modes of deformation, such as lateral translations or rotations, can create a displacement vector that is not aligned with this sensitive axis. To demonstrate this, the dummy chest was loaded quasistatically and dynamically in a series of tests. A string potentiometer array, with the capability to monitor additional deflection modes, was used to supplement the measurement of the chest slider.
Technical Paper

Advancements in Crash Sensing

2000-11-01
2000-01-C036
The crash modes that occur each day on streets and highways have not changed dramatically over the past 50 years. The need to better understand those crash modes and their relation to rapidly emerging, tailorable restraint systems has intensified recently. The algorithms necessary for predicting a deployment event are based on an approach of coupling the occupant kinematics in a crash to the sensing technology that will activate the restraint system. This paper describes methods of computer modeling, occupant sensing and vehicle crash dynamics to define a crash sensing system that reacts to a complex set of input conditions to invoke an effective restraint response.
Technical Paper

An Analytical Model to Study the Infant Seat/Airbag Interaction

1992-02-01
920126
As passenger-side airbags are introduced into the vehicle fleet, consideration must be given to the possible interaction of the airbag with children and child restraint systems. Specifically, a rear-facing infant seat may represent an out-of-position occupanVrestraint system in relation to the deploying airbag due to the limited distance between the infant seat and the instrument panel. Current safety standards for child restraints do not address this issue and the potential for serious injury mandates further analysis. Simulation studies can assist in understanding the behavior of such interaction and help to reduce the number of tests to evaluate infant seat performance. New developments in simulation technology offer state-of-the-art tools to simulate a deploying airbag using a finite element model while the occupant, infant seat and vehicle interior are simulated with linked rigid body systems.
X