Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Injuries, Anatomy, Biomechanics & Federal Regulation

2024-09-09
Safety continues to be one of the most important factors in motor vehicle design, manufacturing, and marketing.  This course provides a comprehensive overview of these critical automotive safety considerations: injury and anatomy; human tolerance and biomechanics; occupant protection; testing; and federal legislation. The knowledge shared at this course enables participants to be more aware of safety considerations and to better understand and interact with safety experts. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 18 Continuing Education Units (CEUs).
Technical Paper

Set-up of an in-car system for investigating driving style on the basis of the 3D-method

2024-07-02
2024-01-3001
Investigating human driver behavior enhances the acceptance of the autonomous driving and increases road safety in heterogeneous environments with human-operated and autonomous vehicles. The previously established driver fingerprint model, focuses on the classification of driving style based on CAN bus signals. However, driving styles are inherently complex and influenced by multiple factors, including changing driving environments and driver states. To comprehensively create a driver profile, an in-car measurement system based on the Driver-Driven vehicle-Driving environment (3D) framework is developed. The measurement system records emotional and physiological signals from the driver, including ECG signal and heart rate. A Raspberry Pi camera is utilized on the dashboard to capture the driver's facial expressions and a trained convolutional neural network (CNN) recognizes emotion. To conduct unobtrusive ECG measurements, an ECG sensor is integrated into the steering wheel.
Book

Stapp Car Crash Journal

2024-06-28
This title includes the technical papers developed for the 2023 Stapp Car Crash Conference, the premier forum for the presentation of research in impact biomechanics, human injury tolerance, and related fields, advancing the knowledge of land-vehicle crash injury protection. The conference provides an opportunity to participate in open discussion about the causes and mechanisms of injury, experimental methods and tools for use in impact biomechanics research, and the development of new concepts for reducing injuries and fatalities in automobile crashes.
Training / Education

Reconstruction and Analysis of Rollover Crashes of Light Vehicles

2024-06-03
For automotive engineers involved in crash reconstruction and analysis, a knowledge of basic accident reconstruction principles and techniques is essential, but often insufficient to answer all of the questions posed by design engineers, regulators, and lawyers. This course takes participants beyond the basics of accident reconstruction to physical models and analysis techniques that are unique to the reconstruction of single-vehicle rollover crashes.
Technical Paper

Anti-Rollover Control for All-Terrain Vehicle Based on Zero-Moment Point

2024-04-30
2024-01-5055
To investigate the rollover phenomena experienced by all-terrain vehicles (ATVs) during their motion caused by input from the road surface, a combined simulation using CarSim and Simulink has been employed to validate an active anti-rollover control strategy based on differential braking for ATVs, followed by vehicle testing. In the research process, a nonlinear three-degrees-of-freedom vehicle model has been developed. By utilizing a zero-moment point index as a rollover warning indicator, this approach could accurately detect the rollover status of the vehicle, particularly in scenarios involving low road adhesion on unpaved surfaces, which are characteristic of ATV operation. The differential braking, generating a roll moment by adjusting the amount of lateral force each braked tire can generate, was proved as an effective method to enhance rolling stability.

Why Attend - Evolving to MedDev 2022

2024-04-29
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies
Event

Exhibit/Sponsor - Evolving to MedDev 2021

2024-04-29
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies

Evolving to MedDev 2022

2024-04-29
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies

SAE International

2024-04-29
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies

Sponsor - Evolving to MedDev 2022

2024-04-29
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies

Evolving to MedDev 2022

2024-04-29
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies
Event

Program - Evolving to MedDev 2021

2024-04-29
Evolving to MedDev provides a new opportunity for executives in aerospace, automotive and medical devices companies to connect and develop long-term growth strategies and find ways to meet the increased short-term demand for medical supplies
Journal Article

Examination of Crash Injury Risk as a Function of Occupant Demographics

2024-04-17
2023-22-0002
The objectives of this study were to provide insights on how injury risk is influenced by occupant demographics such as sex, age, and size; and to quantify differences within the context of commonly-occurring real-world crashes. The analyses were confined to either single-event collisions or collisions that were judged to be well-defined based on the absence of any significant secondary impacts. These analyses, including both logistic regression and descriptive statistics, were conducted using the Crash Investigation Sampling System for calendar years 2017 to 2021. In the case of occupant sex, the findings agree with those of many recent investigations that have attempted to quantify the circumstances in which females show elevated rates of injury relative to their male counterparts given the same level bodily insult. This study, like others, provides evidence of certain female-specific injuries.
Journal Article

Evaluation of DAMAGE Algorithm in Frontal Crashes

2024-04-17
2023-22-0006
With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 – BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world.
Technical Paper

An Evaluation of the Performance of the Bendix Wingman Fusion G1 Collision Mitigation System in a 2017 Kenworth T680

2024-04-09
2024-01-2893
The Bendix Wingman Fusion – a radar and camera collision mitigation system (CMS) available on commercial vehicles – was evaluated in two separate test series to determine its performance in simulated rear collision scenarios. In the first series of tests, evaluations were conducted in daytime, nighttime, and rainy conditions between 15 to 58 miles per hour (mph) to evaluate the performance of the audible and visual forward collision warning (FCW) system in a first-generation Bendix Wingman Fusion CMS while approaching a stationary live vehicle target (SLVT) in a 2017 Kenworth T680. A second test series was conducted with a 2017 Kenworth T680 traveling at 50 mph in daytime conditions approaching a decelerating vehicle to evaluate the Bendix Wingman Fusion CMS on the truck. Both test series sought to determine the maximum distance the system would warn prior to the test driver swerving around the SLVT or moving vehicle target.
Technical Paper

Enhanced Safety of Heavy-Duty Vehicles on Highways through Automatic Speed Enforcement – A Simulation Study

2024-04-09
2024-01-1964
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios.
Technical Paper

The Effectiveness of Forward Collision Warning Systems in Detecting Real-World Passenger and Nonpassenger Vehicles Relative to a Surrogate Vehicle Target

2024-04-09
2024-01-1978
Automatic emergency braking and forward collision warning (FCW) reduce the incidence of police-reported rear-end crashes by 27% to 50%, but these systems may not be effective for preventing rear-end crashes with nonpassenger vehicles. IIHS and Transport Canada evaluated FCW performance with 12 nonpassenger and 7 passenger vehicle or surrogate vehicle targets in five 2021-2022 model year vehicles. The presence and timing of an FCW was measured as a test vehicle traveling 50, 60, or 70 km/h approached a stationary target ahead in the lane center. Equivalence testing was used to evaluate whether the proportion of trials with an FCW (within ± 0.20) and the average time-to-collision of the warning (within ± 0.23 sec) for each target was meaningfully different from a global vehicle car target (GVT).
Technical Paper

Torque Vectoring for Lane-Changing Control during Steering Failures in Autonomous Commercial Vehicles

2024-04-09
2024-01-2328
Lane changing is an essential action in commercial vehicles to prevent collisions. However, steering system malfunctions significantly escalate the risk of head-on collisions. With the advancement of intelligent chassis control technologies, some autonomous commercial vehicles are now equipped with a four-wheel independent braking system. This article develops a lane-changing control strategy during steering failures using torque vectoring through brake allocation. The boundaries of lane-changing capabilities under different speeds via brake allocation are also investigated, offering valuable insights for driving safety during emergency evasions when the steering system fails. Firstly, a dual-track vehicle dynamics model is established, considering the non-linearity of the tires. A quintic polynomial approach is employed for lane-changing trajectory planning. Secondly, a hierarchical controller is designed.
Technical Paper

Multi-Objective Optimization of Occupant Survival Space of a Medium-Duty Vehicle under Rollover Condition

2024-04-09
2024-01-2263
Due to the high center of gravity of medium-duty vehicles, rollover accidents can easily occur during high-speed cornering and lane changes. In order to prevent the deformation of the body structure, which would restrict the survival space and cause compression injuries to occupants, it is necessary to investigate methods for mitigating these incidents. This paper establishes a numerical model of right-side rollover for a commercial medium-duty vehicle in accordance with ECE R66 regulations, and the accuracy of the model is verified by experiment. According to the results, the material and size parameters of the key components of the right side pillar are selected as design variables. The response result matrix was constructed using the orthogonal design method for total mass, energy absorption, maximum collision acceleration, and minimum distance from the survival space.
X