Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Mitigation of Brake Moan Noise

2020-10-05
2020-01-1605
Mitigation of Brake Moan Noise L. Zeng, A. Bourgeau, Y. Bhumireddy, T. Clarke, J. Ploof, M. Khan Chassis Engineering, FCA Group 800 Chrysler Dr., Auburn Hills, Michigan 48326 Brake moan noise is one of the major issues of automotive rear brake systems. In the North America automotive market, light trucks and SUVs are most often to have brake moan noise issues. Compared to brake squeal noise, brake moan noise is at relative lower frequencies (usually below 1kHz), it stimulates both audio and vibration sensations of vehicle occupants, its vibration mode involves not only the brake system but also the suspension and subframe of the vehicle. Through a case study, this paper will share some of the experimental and analytical technologies and developments at Chassis Engineering of FCA group in brake moan noise mitigation.
Technical Paper

Experimental Investigation of Brake Noise

2020-10-05
2020-01-1610
Experimental Investigation of Brake Noise L. Zeng, J. Sisco, A. Bourgeau Chassis Engineering, FCA Group 800 Chrysler Dr., Auburn Hills, Michigan 48326 Automotive customers are very critical about brake performance, and brake noise complaints account for about 25% of all brake related warranty claims. Automotive OEMs and braking system suppliers have invested heavily in brake noise solution technologies and processes. The implementation of noise matrix screen testing and analytical CAE brake instability simulation made significant improvements in developing brake noise solutions during product development. To further improve brake noise solution development efficiency, it is very important to have a highly confident CAE model that correlates with experimental test data.
Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound.
Technical Paper

Numerical Investigation of Tonal Noise at Automotive Side Mirrors Due to Aeroacoustic Feedback

2020-09-30
2020-01-1514
In addition to the typical broadband noise character of wind noise, tonal noise phenomena can be much more disruptive, regardless of the overall interior noise quality of the vehicle. Whistling sounds usually occur by flow over sharp edges and resonant gaps, but can also be caused by the feedback of sound waves with laminar boundary layers or separation bubbles and the resulting frequency-selective growth of boundary layer instabilities. Such aeroacoustic feedback can e.g. occur at the side mirror of a vehicle and one compellingly needs the coupling of acoustic and flow field. A compressible large eddy simulation (LES) is in principle suitable but one has to take care of any numerical artifacts which can disturb the entire acoustic field. This paper describes the possibility to resolve aeroacoustic feedback with a commercial 2nd/3rd order finite volume CFD code.
Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
Technical Paper

Numerical Investigation of Narrow-Band Noise Generation by Automotive Cooling Fans

2020-09-30
2020-01-1513
Axial cooling fans are commonly used in electric vehicles to cool batteries with high heating load. One drawback of the cooling fans is the high aeroacoustic noise level resulting from the fan blades and the obstacles facing the airflow. To create a comfortable cabin environment in the vehicle, and to reduce exterior noise emission, a low-noise installation design of the axial fan is required. The purpose of the project is to develop an efficient computational aeroacoustics (CAA) simulation process to assist the cooling-fan installation design. This paper reports the current progress of the development, where the narrow-band components of the fan noise is focused on. Two methods are used to compute the noise source. In the first method the source is computed from the flow field obtained using the unsteady Reynolds-averaged Navier-Stokes equations (unsteady RANS, or URANS) model.
Technical Paper

Using Statistical Energy Analysis to Optimize Sound Package for Realistic Load Cases

2020-09-30
2020-01-1525
The statistical energy analysis (SEA) is widely used to support the development of the sound package of cars. This paper will present a model prepared to investigate the sound package of the new Audi A3 and its correlation against measurements. Special care was given during the creation of the model on the representation of the structure to able the analysis of structure borne energy flow on top of the classical airborne analysis usually done with SEA. The sound package is also detailed in the model to allow further optimization and analysis of its performance. Two real life load cases will be presented to validate the model with measurements. First, the dominating powertrain and second, a case with dominating rolling noise. An analysis of the contribution of the different source components and a way to diagnose the weak paths of the vehicle will be presented. The focus of this investigation is the application of optimally adjusted treatment.
Technical Paper

Simulating and Optimizing the Dynamic Chassis Forces of the Audi e-tron

2020-09-30
2020-01-1521
With battery electric vehicles (BEV), due to the absence of the combustion process, the rolling noise comes even more into play. The BEV technology also leads to different concepts of how to mount the electric engine in the car. Commonly, also applied with the Audi e-tron, the rear engine is mounted on a subframe, which again is connected to the body structure. This concept leads to a better insulation in the high frequency range, yet it bears some problems in designing the mounts for ride comfort (up to 20Hz) or body boom (up to 70Hz). Commonly engine mounts are laid-out based on driving comfort (up to 20Hz). The current paper presents a new method to find an optimal mount design (concerning the stiffness) in order to reduce the dynamic chassis forces which are transferred to the body up to 100Hz. This directly comes along with a reduction of the sound pressure level for the ‘body boom’ phenomena.
Technical Paper

Tire NVH Optimization for Future Mobility

2020-09-30
2020-01-1520
Vehicle NVH (Noise, Vibration and Harshness) is one of the most critical customer touchpoints which may lead to buying decisions. The importance of Noise inside the cabin is increasing day by day because of the new era of E-mobility and autonomous driving. Noise source could be the engine, powertrain, tyre, suspension components, brake system, etc. depending on driving conditions. Among these, tire noise is being identified as biggest contributor at constant mid-speed driving where engine and powertrain operate at minimum noise and wind noise is also at a moderate level. This driving condition becomes very significant for electric vehicles where engine noise is replaced by motor noise which is a tonal noise at very high frequency. This makes the improvement of tire noise levels quintessential for good cabin acoustic feel. This demands a proactive approach to develop low noise tire platforms for future mobility by leveraging research tools and best practices in the industry.
Technical Paper

Advanced CAE Methods for NVH Development of High Speed Electric Axle

2020-09-30
2020-01-1501
The rate in the electrification of vehicles has risen in recent years. With intensified development more and more attention is paid to the noise and vibration in such vehicles especially from the EDU (Electric Drive Unit). In this paper the main NVH simulation process of a high-speed E-axle up to 30,000 rpm for premium class vehicle application is presented. The high speed, high-power density and lightweight design introduces new challenges. Benchmarking of different EDUs and vehicles leads to targets which can be used at the early stage of development as subsystem targets. This paper shows the CAE methodology which can be used to verify the design and guarantee the target achievement. Using CAE both source and structure can be optimized to improve the NVH behavior.
Technical Paper

Effects of On-Road Conditions on HVAC Noise

2020-09-30
2020-01-1555
Noise inside the passenger cabin is made up of multiple sources. A significant reduction of the major sound sources such as the engine, wind and tire noise helped to improve the comfort for passengers. As a consequence, the HVAC sound (heating, ventilation and air-conditioning) is unmasked as a primary noise source inside the passenger cabin and has to be taken into consideration when designing passenger cabin sound. While HVAC sound is often evaluated at stop, the most common situation of its use is while driving. In case of fresh air as mode of operation, the HVAC system is coupled to the environment through the air intake. Any change in the boundary conditions due to on-road driving events and gusts of wind affects the flow field in the HVAC system and in turn influences HVAC noise. This study investigates the effect of mass flow and pressure fluctuations on the HVAC noise. In a first step, major influences on the HVAC system are identified in an on-road test.
Technical Paper

Resabtors - Advanced Multi-Material Muffler Designs for Clean Air Applications

2020-09-30
2020-01-1554
The development and production of resonators on the charged air side of combustion engines require profound base of knowledge in designing, simulating and the production of such parts in different materials (aluminum, copper, stainless steel and technical plastic). As combustion engines are under constant discussion, this existing knowledge base should be used for other applications within and outside the automotive industry. Very quickly it became apparent that new challenges often require completely new solutions, designs and materials to meet the requirements of flow noise reducing parts. For example, for clean air applications mufflers based on “special treated foams” and “meta-materials” can be introduced. These materials offer new potentials for tuning of the frequency range and allow improved broad banded flow noise attenuation. Such parts are named “Resabtors” in order to take respect of the different flow noise attenuation principles resonation and absorbing.
Technical Paper

Robust Development of Electric Powertrain NVH for Compact Electric SUV

2020-09-30
2020-01-1503
Electric vehicles (EV's) present new challenges to achieving the required noise, vibration & harshness performance (NVH) compared with conventional vehicles. Specifically, high-frequency noise and abnormal noise, previously masked by the internal combustion engine can also cause annoyance in an EV. Electric motor (E-motor) whine noise caused by electromagnetic excitation during E-motor operation is caused by torque ripple and stator local excitation. Under high speed and high load operating conditions, the sound level is low, however high frequency whine noise is a factor that can impair the vehicle level NVH performance. An example of a previously masked abnormal noise is a droning noise that can be caused by manufacturing quality variation of the spline coupling between the rotor shaft of the E-motor and the input shaft of the reducer, it is dominated by multiple higher orders of the E-motor rotation frequency.
X