Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Trend of Rear Occupant Protection in Frontal Crashes over Model Years of Vehicles

2009-04-20
2009-01-0377
The National Automotive Sampling System’s Crashworthiness Data System (NASS CDS) was used to study rear occupant injuries in frontal crashes. The risks of injury for the rear passengers of different age groups were calculated and compared to the risks of injury for the front occupants. Furthermore, the risks of injury were investigated for the rear and front adult occupants over model years of vehicles. Distribution of injuries among body regions and vehicle contact points were also investigated for the rear adult occupants. While the rear occupants were more protected than the front occupants in most of the groups studied, an increasing trend was observed in the risk of injury of the rear adult occupants over the model years of the vehicles.
Technical Paper

Side Impact Risk for 7-13 Year Old Children

2008-04-14
2008-01-0192
The purpose of this paper is to assess the vehicle environment that a child occupant, between the ages of seven and thirteen years old, is exposed to in a real world crash. The focus of analysis is on those child occupants that are seated at the struck side in a lateral collision. This study was based on data extracted from the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) between years 1991-2006. Analysis was based upon the evaluation of the projected consequence of injury to the child occupants. The societal costs generated as a result of occupant injuries were quantified. The societal cost, or Harm, acts as a measure of consequence of occupant exposure to the vehicle environment, when involved in a collision. The Harm was determined as a function of ΔV, principal direction of force, vehicle extent of damage, the pattern of damage to the vehicle, and the magnitude of intrusion based on the occupant seating position.
Technical Paper

Evaluating Frontal Crash Test Force-Deformation Data for Vehicle to Vehicle Frontal Crash Compatibility

2008-04-14
2008-01-0813
Vehicle stiffness is one of the three major factors in vehicle to vehicle compatibility in a frontal crash; the other two factors are vehicle mass and frontal geometry. Vehicle to vehicle compatibility in turn is an increasingly important topic due to the rapid change in the size and characteristics of the automotive fleet, particularly the increase of the percentage of trucks and SUVs. Due to the non-linear nature of the mechanics of vehicle structure, frontal stiffness is not a properly defined metric. This research is aimed at developing a well defined method to quantify frontal stiffness for vehicle-to-vehicle crash compatibility. The method to be developed should predict crash outcome and controlling the defined metric should improve the crash outcome. The criterion that is used to judge the aggressivity of a vehicle in this method is the amount of deformation caused to the vulnerable vehicles when crashed with the subject vehicle.
Technical Paper

Far-Side Impact Vehicle Simulations with MADYMO

2007-04-16
2007-01-0363
To date, anthropomorphic test devices (ATDs) have not been designed with consideration for human motion in far-side impacts. Previous tests with a cadaver and a BioSID dummy at the Medical College of Wisconsin confirmed that the dummy does not suitably model the human motion. To further evaluate different ATDs in far-side crashes, MAthematical DYnamic MOdeling (MADYMO) was employed. The modeling showed that the motion of a Hybrid III, BioSID, EuroSid1, EuroSID2, or SID2s did not accurately reflect the motion of a human cadaver under the same impact configurations as the cadaver test. The MADYMO human facet model was found to closely reproduce the kinematics of the cadaver test. The effect of varying console designs on occupant kinematics is presented in this paper. The human facet model appears to be a good interim tool for the evaluation of countermeasures in far-side crashes.
Technical Paper

Using CIREN Data to Assess the Performance of the Second Generation of Air Bags

2004-03-08
2004-01-0842
The U.S. Department of Transportation-sponsored Crash Injury Research and Engineering Network (CIREN) program offers a reasonable look at the efficacy of second-generation air bags. This paper examines the data from the William Lehman Injury Research Center (WLIRC). The WLIRC data is a near census of crashes in the Miami-Dade region with occupants that appear to be severely injured. The percentage of deaths among trauma patients in the WLIRC data as a function of delta-V for first-generation air bags was higher than expected at lower delta-V's. There were nine driver fatalities at delta-V's of less than 20 mph (four involving short stature occupants, four with elderly occupants, and one due to significant intrusion and/or vehicle incompatibility). The data supported NHTSA's conclusion that first-generation air bags were too aggressive for occupants in close proximity to the deploying air bag and too aggressive for older persons.
Technical Paper

Simulation of Road Crash Facial Lacerations By Broken Windshields

1987-02-23
870320
The facial laceration test has been proposed as an addition to the dummy injury criteria of Federal Motor Vehicle Safety Standard 208. To better understand laceration conditions as they actually occur, three road crashes of increasing severity, all involving facial laceration by the broken (cracked) windshield and one involving partial ejection, have been simulated physically and analytically. The physical simulations used vehicle test bucks, the Hybrid III head with the chamois facial coverings of the facial laceration test, and a piston - constrained Head Impactor. Computer simulations of the three crashes were also carried out using the CALSPAN 3D “CVS” and the 2D “DRISIM” computer programs. The computer simulations provide insight into the effective mass of the head and body on windshield contact, and the forces, velocities, and accelerations involved.
X