Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Water Recovery and Urine Collection in the Russian Orbital Segment of the International Space Station (Mission 1 Through Mission 17)

2009-07-12
2009-01-2485
The paper summarizes the experience gained with the ISS water management system during the missions ISS-1 through ISS-17 (since November 2, 2000, through October 23, 2008). The water supply sources and structure, consumption and supply balance and balance specifics at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery on board the ISS and the need to supplement the station's water supply hardware with a system for water reclamation from urine SRV-U is emphasized. The prospects of regenerative water supply system development are considered.
Technical Paper

The Prospects for Development of Regenerative Life Support Systems of Space and Planetary Stations

2008-06-29
2008-01-2188
Based on experience obtained in operation of the water and oxygen recovery systems installed onboard the Russian space stations Salut, Mir and the International Space Station ISS, data on the water and oxygen balance for a space station are presented as well as operational parameters and performance data of the systems. Using the data obtained design analysis of an integrated life support system for water and oxygen recovery based on physical/chemical means to be installed on a promising space station is carried out. Mandatory verification tests of new process (technologies) and recovery systems are to be conducted on ISS.
Technical Paper

srv-k Status Aboard the International Space Station During Missions 15 and 16

2008-06-29
2008-01-2191
The paper summarizes the experience gained on the ISS water management system during the missions of ISS-1 through ISS-16 (since November 2 2000, through December 31, 2007). The water supply sources and structure, consumption and supply balance at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery on a board the ISS and the need to supplement the station's water supply hardware with a system for water reclamation from urine, water from a carbon dioxide reduction system and hygiene water is shown.
Journal Article

Chemical Analysis Results for Potable Water Returned from ISS Expeditions 14 and 15

2008-06-29
2008-01-2197
The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 14 and 15. During the 12-month duration of both expeditions, the Space Shuttle docked with the ISS on four occasions to continue construction and deliver additional crew and supplies; however, no Shuttle potable water was transferred to the station during Expedition 14. Russian ground-supplied potable water and potable water from regeneration of humidity condensate were both available onboard the ISS for consumption by the Expeditions 14 and 15 crews. A total of 16 chemical archival water samples were collected with U.S. hardware during Expeditions 14 and 15 and returned on Shuttle flights STS-116 (12A.1), STS-117 (13A), STS-118 (13A.1), and STS-120 (10A) in December 2006, and June, August, and November of 2007, respectively.
Journal Article

Microgravity Evaluation of Colorimetric-Solid Phase Extraction for the Measurement of Total I (Iodine, Iodide, and Triiodide) in Spacecraft Drinking Water

2008-06-29
2008-01-2199
We are developing a drinking water test kit based on colorimetric-solid phase extraction (C-SPE) for use onboard the International Space Station (ISS) and on future Lunar and/or Mars missions. C-SPE involves measuring the change in diffuse reflectance of indicator disks following their exposure to a water sample. We previously demonstrated the effectiveness of C-SPE in measuring iodine in microgravity. This analytical method has now been extended to encompass the measurement of total I (i.e., iodine, iodide, and triiodide). This objective was accomplished by introducing an oxidizing agent to convert iodide and triiodide to iodine, which is then measured using the indicator disks previously developed for iodine. We report here the results of a recent series of C-9 microgravity tests of this method. The results demonstrate that C-SPE technology is poised to meet the total I monitoring requirements of the international space program.
Technical Paper

Sampling and Chemical Analysis of Potable Water for ISS Expeditions 12 and 13

2007-07-09
2007-01-3214
The crews of Expeditions 12 and 13 aboard the International Space Station (ISS) continued to rely on potable water from two different sources, regenerated humidity condensate and Russian ground-supplied water. The Space Shuttle launched twice during the 12-months spanning both expeditions and docked with the ISS for delivery of hardware and supplies. However, no Shuttle potable water was transferred to the station during either of these missions. The chemical quality of the ISS onboard potable water supplies was verified by performing ground analyses of archival water samples at the Johnson Space Center (JSC) Water and Food Analytical Laboratory (WAFAL). Since no Shuttle flights launched during Expedition 12 and there was restricted return volume on the Russian Soyuz vehicle, only one chemical archive potable water sample was collected with U.S. hardware and returned during Expedition 12. This sample was collected in March 2006 and returned on Soyuz 11.
Technical Paper

Liquid Metering Centrifuge Sticks (LMCS): A Centrifugal Approach to Metering Known Sample Volumes for Colorimetric Solid Phase Extraction (C-SPE)

2007-07-09
2007-01-3216
Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements.
Technical Paper

Colorimetric-Solid Phase Extraction Technology for Water Quality Monitoring: Evaluation of C-SPE and Debubbling Methods in Microgravity

2007-07-09
2007-01-3217
Colorimetric-solid phase extraction (C-SPE) is being developed as a method for in-flight monitoring of spacecraft water quality. C-SPE is based on measuring the change in the diffuse reflectance spectrum of indicator disks following exposure to a water sample. Previous microgravity testing has shown that air bubbles suspended in water samples can cause uncertainty in the volume of liquid passed through the disks, leading to errors in the determination of water quality parameter concentrations. We report here the results of a recent series of C-9 microgravity experiments designed to evaluate manual manipulation as a means to collect bubble-free water samples of specified volumes from water sample bags containing up to 47% air. The effectiveness of manual manipulation was verified by comparing the results from C-SPE analyses of silver(I) and iodine performed in-flight using samples collected and debubbled in microgravity to those performed on-ground using bubble-free samples.
Technical Paper

Water Recovery on the International Space Station: The Perspectives of Space Stations' Water Supply Systems

2007-07-09
2007-01-3174
The paper summarizes the six years' experience gained with the ISS water management system during the missions ISS-1 through ISS-14 (since November 2, 2000 through October 31, 2006). The water supply sources, consumption structure and supply balance and balance specifics at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery during space missions and the prospects of regenerative water supply of an interplanetary space station are discussed. The aim of this paper is to summarize the water supply experience and to provide recommendations for a perspective water supply integrated system based on water recovery.
Technical Paper

ISS Expeditions 10 & 11 Potable Water Sampling and Chemical Analysis Results

2006-07-17
2006-01-2015
During the twelve month period comprising Expeditions 10 and 11, the chemical quality of the potable water onboard the International Space Station (ISS) was verified through the return and ground analysis of water samples. The two-man Expedition 10 crew relied solely on Russian-provided ground water and reclaimed cabin humidity condensate as their sources of potable water. Collection of archival water samples with U.S. hardware has remained extremely restricted since the Columbia tragedy because of very limited return volume on Russian Soyuz vehicles. As a result only two such samples were collected during Expedition 10 and returned on Soyuz 9. The average return sample volume was only 250 milliliters, which limited the breadth of chemical analysis that could be performed. Despite the Space Shuttle vehicle returning to flight in July 2005, only two potable water samples were collected with U.S. hardware during Expedition 11 and returned on Shuttle flight STS-114 (LF1).
Technical Paper

Shuttle Potable Water Quality from STS-26 to STS-114

2006-07-17
2006-01-2014
Potable water for the Shuttle orbiter is generated as a by-product of electricity production by the fuel cells. Water from the fuel cells flows through a Microbial Check Valve (MCV), which releases biocidal iodine into the water before it enters one of four storage tanks. Potable water is dispensed on-orbit at the rehydration unit of the galley. Due to crew health concerns, iodine removal hardware is installed in the chilled water inlet line to the galley to remove the iodine from the potable water before it is consumed by the crew. The Shuttle water system is sampled to ensure water quality is maintained during all operational phases from the disinfection of the ground servicing equipment through the completion of each mission. This paper describes and summarizes the Shuttle water quality requirements, the servicing of the Shuttle water system, the collection and analysis of Shuttle water samples, and the results of the analyses.
Technical Paper

Chemical Characterization of U.S. Lab Condensate

2006-07-17
2006-01-2016
Approximately 50% of the water consumed by International Space Station crewmembers is water recovered from cabin humidity condensate. Condensing heat exchangers in the Russian Service Module (SM) and the United States On-Orbit Segment (USOS) are used to control cabin humidity levels. In the SM, humidity condensate flows directly from the heat exchanger to a water recovery system. In the USOS, a metal bellows tank located in the US Laboratory Module (LAB) collects and stores condensate, which is periodically off-loaded in about 20-liter batches to Contingency Water Containers (CWCs). The CWCs can then be transferred to the SM and connected to a Condensate Feed Unit that pumps the condensate from the CWCs into the water recovery system for processing. Samples of the condensate in the tank are collected during the off-loads and returned to Earth for analyses.
Technical Paper

The Performance of the System for Water Recovery from Humidity Condensate (SRV-K) on International Space Station, ISS Missions 1 through 11

2006-07-17
2006-01-2269
The paper summarizes the experience gained with the ISS water management system during the missions ISS-1 through ISS-11 (since November 2 2000, through October 10, 2005). The water supply sources and structure, consumption and supply balance at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery on board the ISS and the need to supplement the station’s water supply hardware with a system for water reclamation from urine SRV-U is shown. The prospects of regenerative water supply system development are considered.
Technical Paper

The Influence of Microbiology on Spacecraft Design and Controls: A Historical Perspective of the Shuttle and International Space Station Programs

2006-07-17
2006-01-2156
For over 40 years, NASA has been putting humans safely into space in part by minimizing microbial risks to crew members. Success of the program to minimize such risks has resulted from a combination of engineering and design controls as well as active monitoring of the crew, food, water, hardware, and spacecraft interior. The evolution of engineering and design controls is exemplified by the implementation of HEPA filters for air treatment, antimicrobial surface materials, and the disinfection regimen currently used on board the International Space Station. Data from spaceflight missions confirm the effectiveness of current measures; however, fluctuations in microbial concentrations and trends in contamination events suggest the need for continued diligence in monitoring and evaluation as well as further improvements in engineering systems. The knowledge of microbial controls and monitoring from assessments of past missions will be critical in driving the design of future spacecraft.
Technical Paper

Water Supply of the Crew of a Space Station Through Water Recovery and Water Delivery: SRV-K and SPK-U System Operation on ISS

2005-07-11
2005-01-2806
The paper summarizes the experience gained with the ISS water management system during the missions ISS-1 through ISS-10 (since November 2 2000, through November 30, 2004). The water supply sources and structure, consumption and supply balance and balance specifics at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery on board the ISS and the need to supplement the station’s water supply hardware with a system for water reclamation from urine SRV-U is emphasized. The prospects of regenerative water supply system development are considered.
Technical Paper

Role of Environmental Factors in Immunity and Infectious Disease Risk

2005-07-11
2005-01-2763
Environmental monitoring of microbial contaminants is important for crew health and assessing functionality of engineering systems. Routine monitoring of air and surfaces on the International Space Station found Staphylococcus spp. to be the most common bacterial species whereas Aspergillus spp. were the most common fungi. The levels of microbial contaminants in the air and surfaces were typically low and within the acceptability limits. Bacterial levels in the potable water from the hot water port were uniformly low. Levels in water from the warm port and the SVO-ZV water distribution system exceeded acceptability limits on occasion. Methylobacterium spp. And Ralstonia spp. were the bacteria most commonly isolated from the potable water systems. The space environment, stress, and other factors may also diminish the host immune system. The status of antimicrobial functions of neutrophils and monocytes was determined by flow cytometry.
Technical Paper

Chemical Analysis of ISS Potable Water From Expeditions 8 and 9

2005-07-11
2005-01-2885
With the Shuttle fleet grounded, limited capability exists to resupply in-flight water quality monitoring hardware onboard the International Space Station (ISS). As such, verification of the chemical quality of the potable water supplies on ISS has depended entirely upon the collection, return, and ground-analysis of archival water samples. Despite the loss of Shuttle-transferred water as a water source, the two-man crews during Expedition 8 and Expedition 9 maintained station operations for nearly a year relying solely on the two remaining sources of potable water; reclaimed humidity condensate and Russian-launched ground water. Archival potable water samples were only collected every 3 to 4 months from the systems that regenerate water from condensate (SRV-K) and distribute stored potable water (SVO-ZV).
Technical Paper

Microbial Surveillance of Potable Water Sources of the International Space Station

2005-07-11
2005-01-2886
To mitigate risk to crew health, the microbial surveillance of the quality of potable water sources of the International Space Station (ISS) has been ongoing since before the arrival of the first permanent crew. These water sources have included stored ground-supplied water, water produced by the Shuttle fuel cells during flight, and ISS humidity condensate that is reclaimed and processed. In-flight monitoring was accomplished using a self-contained filtering system designed to allow bacterial growth and enumeration during flight. Upon return to Earth, microbial isolates were identified using 16S ribosomal gene sequencing. While the predominant isolates were common Gram negative bacteria including Ralstonia eutropha, Methylobacterium fujisawaense, and Sphingomonas paucimobilis, opportunistic pathogens such as Stenotrophomonas maltophilia and Pseudomonas aeruginosa were also isolated.
Technical Paper

SRV-K Status aboard the International Space Station and Water Recovery Future Prospects

2004-07-19
2004-01-2489
The paper deals with the performance data of the service module Zvezda integrated water supply system of the International Space Station (ISS) as of March 31, 2004. The water supply and demand balance are analyzed. It is shown that water recovery from humidity condensate has been especially important when water delivery by Space Shuttles was terminated. The SRV-K contribution in potable water supply for crew needs was up to 76%. The data of humidity condensate and recovered water compositions are reviewed. The effective cooperation of the international partners on part of life support is shown. Water recovery future prospects are discussed.
Technical Paper

ISS Potable Water Sampling and Chemical Analysis: Expeditions 6 & 7

2004-07-19
2004-01-2537
Ever since the first crew arrived at the International Space Station (ISS), archival potable water samples have been collected and returned to the ground for detailed chemical analysis in order to verify that the water supplies onboard are suitable for crew consumption. The Columbia tragedy, unfortunately, has had a dramatic impact on continued ISS operations. A major portion of the ISS water supply had previously consisted of Shuttle-transferred water. The other two remaining sources of potable water, i.e., reclaimed humidity condensate and Russian-launched ground water, are together insufficient to maintain 3-person crews. The Expedition 7 crew launched in April of 2003 was, therefore, reduced from three to two persons. Without the Shuttle, resupply of ISS crews and supplies is dependent entirely on Russian launch vehicles (Soyuz and Progress) with severely limited up and down mass.
X