Refine Your Search

Topic

Author

Search Results

Technical Paper

Analyzing the Expense: Cost Modeling for State-of-the-Art Electric Vehicle Battery Packs

2024-04-09
2024-01-2202
The Battery Performance and Cost Model (BatPaC), developed by Argonne National Laboratory, is a versatile tool designed for lithium-ion battery (LIB) pack engineering. It accommodates user-defined specifications, generating detailed bill-of-materials calculations and insights into cell dimensions and pack characteristics. Pre-loaded with default data sets, BatPaC aids in estimating production costs for battery packs produced at scale (5 to 50 GWh annually). Acknowledging inherent uncertainties in parameters, the tool remains accessible and valuable for designers and engineers. BatPaC plays a crucial role in National Highway Transportation Traffic Safety Administration (NHTSA) regulatory assessments, providing estimated battery pack manufacturing costs and weight metrics for electric vehicles. Integrated with Argonne's Autonomie simulations, BatPaC streamlines large-scale processes, replacing traditional models with lookup tables.
Technical Paper

Vehicle Lightweighting Impacts on Energy Consumption Reduction Potential Across Advanced Vehicle Powertrains

2024-04-09
2024-01-2266
The National Highway Traffic Safety Administration (NHTSA) plays a crucial role in guiding the formulation of Corporate Average Fuel Economy (CAFE) standards, and at the forefront of this regulatory process stands Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy (DOE) research institution, has developed Autonomie—an advanced and comprehensive full-vehicle simulation tool that has solidified its status as an industry standard for evaluating vehicle performance, energy consumption, and the effectiveness of various technologies. Under the purview of an Inter-Agency Agreement (IAA), the DOE Argonne Site Office (ASO) and Argonne have assumed the responsibility of conducting full-vehicle simulations to support NHTSA's CAFE rulemaking initiatives. This paper introduces an innovative approach that hinges on a large-scale simulation process, encompassing standard regulatory driving cycles tailored to various vehicle classes and spanning diverse timeframes.
Technical Paper

Light Duty Engine Performance Characteristics with Dimethyl Ether and Propane

2024-04-09
2024-01-2126
The paper explores the performance characteristics of a compression ignition HYUNDAI 2.2L engine operating with Dimethyl Ether (DME). Test are carried out at three operating conditions that weigh heavily in the FTP75 certification cycle (1000rpm-12Nm, 1500rpm-50Nm, 2000rpm-100Nm). The engine features a high-pressure common rail fuel injection system designed to operate with liquified gases. The main component of the fuel system is a high-pressure pump that incorporates an electronic inlet metering valve commanded on a crank-angle base to control the rail pressure. The pump, which requires no pressure regulator, provides the flow needed to the injectors without flow returning to the inlet. This novel fueling system is leveraged in tests that are conducted to examine the impact of EGR, combustion phasing, injection pressure on efficiency and emissions. In addition, the impact of introducing 15% Propane by mass is examined.
Technical Paper

Component Sizing Optimization Based on Technological Assumptions for Medium-Duty Electric Vehicles

2024-04-09
2024-01-2450
In response to the stipulations of the Energy Policy and Conservation Act and the global momentum toward carbon mitigation, there has been a pronounced tightening of fuel economy standards for manufacturers. This stricter regulation is coupled with an accelerated transition to electric vehicles, catalyzed by advances in electrification technology and a decline in battery cost. Improvements in the fuel economy of medium- and heavy-duty vehicles through electrification are particularly noteworthy. Estimating the magnitude of fuel economy improvements that result from technological advances in these vehicles is key to effective policymaking. In this research, we generated vehicle models based on assumptions regarding advanced transportation component technologies and powertrains to estimate potential vehicle-level fuel savings. We also developed a systematic approach to evaluating a vehicle’s fuel economy by calibrating the size of the components to satisfy performance requirements.
Technical Paper

Impact of Advanced Technologies on Energy Consumption of Advanced Electrified Medium-Duty Vehicles

2024-04-09
2024-01-2453
The National Highway Traffic Safety Administration (NHTSA) has been leading U.S. efforts related to the rulemaking process for Corporate Average Fuel Economy (CAFE) standards. Argonne National Laboratory, a U.S. Department of Energy (DOE) national laboratory, has developed a full-vehicle simulation tool called Autonomie that has become one of the industry standard tools for analyzing vehicle performance, energy consumption, and technology effectiveness. Through an Interagency Agreement, the DOE Argonne Site Office and Argonne National Laboratory have been tasked with conducting full vehicle simulation to support NHTSA CAFE rulemaking. This paper presents an innovative approach focused on large-scale simulation processes spanning standard regulatory driving cycles, diverse vehicle classes, and various timeframes. A key element of this approach is Autonomie’s capacity to integrate advanced engine technologies tailored to specific vehicle classes and powertrains.
Technical Paper

Powering Tomorrow's Light, Medium, and Heavy-Duty Vehicles: A Comprehensive Techno-Economic Examination of Emerging Powertrain Technologies

2024-04-09
2024-01-2446
This paper presents a comprehensive analysis of emerging powertrain technologies for a wide spectrum of vehicles, ranging from light-duty passenger vehicles to medium and heavy-duty trucks. The study focuses on the anticipated evolution of these technologies over the coming decades, assessing their potential benefits and impact on sustainability. The analysis encompasses simulations across a wide range of vehicle classes, including compact, midsize, small SUVs, midsize SUVs, and pickups, as well as various truck types, such as class 4 step vans, class 6 box trucks, and class 8 regional and long-haul trucks. It evaluates key performance metrics, including fuel consumption, estimated purchase price, and total cost of ownership, for these vehicles equipped with advanced powertrain technologies such as mild hybrid, full hybrid, plug-in hybrid, battery electric, and fuel cell powertrains.
Technical Paper

Impact of Advanced Engine Technologies on Energy Consumption Reduction Potentials

2024-04-09
2024-01-2825
The establishment of Corporate Average Fuel Economy (CAFE) standards by the Energy Policy and Conservation Act (EPCA) of 1975 marked a pivotal moment in the automotive industry's pursuit of greater fuel efficiency. The responsibility for the development and enforcement of these standards was assigned to the U.S. Department of Transportation (DOT), with the National Highway Traffic Safety Administration (NHTSA) assuming a critical role in their oversight and implementation. In collaboration with Argonne National Laboratory (Argonne), supported by the U.S. Department of Energy (DOE), significant strides have been made in advancing fuel efficiency through the development of Autonomie, a leading full-vehicle simulation tool. Through an Inter-Agency Agreement between the DOE Argonne Site Office and Argonne, comprehensive full-vehicle simulations are conducted to support NHTSA's CAFE rulemaking processes.
Technical Paper

Transmission Shifting Analysis and Model Validation for Medium Duty Vehicles

2023-04-11
2023-01-0196
Over the past couple of years, Argonne National Laboratory has tested, analyzed, and validated automobile models for the light duty vehicle class, including several types of powertrains including conventional, hybrid electric, plug-in hybrid electric and battery electric vehicles. Argonne’s previous works focused on the light duty vehicle models, but no work has been done on medium and heavy-duty vehicles. This study focuses on the validation of shifting control in advanced automatic transmission technologies for medium duty vehicles by using Argonne’s model-based high-fidelity, forward-looking, vehicle simulation tool, Autonomie. Different medium duty vehicles, from Argonne’s own fleet, including the Ram 2500, Ford F-250 and Ford F-350, were tested with the equipment for OBD (on-board diagnostics) signal data record. For the medium duty vehicles, a workflow process was used to import test data.
Technical Paper

Trade-Offs and Opportunities to Improve Hybrid Vehicle Performance, Cost and Fuel Economy through Better Component Technology and Sizing

2023-04-11
2023-01-0477
Hybrid electric vehicles (HEVs) have seen tremendous improvements in performance, fuel economy and cost over the last two decades. As battery and motor prices decrease, HEVs are likely to be even more attractive to consumers. This study considers how HEVs can improve and whether advancements in engines and other components will play a large role in the HEV segment. Past studies have relied on a rule-based component sizing approach for hybrids to meet certain performance criteria. By going beyond this approach, we can explore the design space by varying engine power and electric drivetrain power. This can provide more insights into the fuel-saving potential of HEVs, and the trade-offs required on performance or cost characteristics to achieve those savings. In this study, we examine the fuel-saving potential of three main hybrid powertrain architectures (parallel, series, and power-split) with varying degrees of hybridization (DOH) and using various engine technologies.
Journal Article

Zero Dimension Heat Release Modeling for Gasoline, Ethanol, Isobutanol and Diisobutylene Operating in Compression Ignition with Varying Injection Strategies

2023-04-11
2023-01-0188
Gasoline compression ignition shows great potential in reducing NOx and soot emissions with competitive thermal efficiency by leveraging the properties of gasoline fuels and the high compression ratio of compression ignition engines operating air-dilute. Meanwhile, its control becomes challenging due to not only the properties of different gasoline-type fuels but also the impacts of injection strategies on the in-cylinder reactivity. As such, a computationally efficient zero-dimension combustion model can significantly reduce the cost of control development. In this study, a previously developed zero-dimension combustion model for gasoline compression ignition was extended to multiple gasoline-type fuel blends and a port fuel injection/direct fuel injection strategy. Tests were conducted on a 12.4-liter heavy-duty engine with five fuel blends.
Technical Paper

Evaluating Class 6 Delivery Truck Fuel Economy and Emissions Using Vehicle System Simulations for Conventional and Hybrid Powertrains and Co-Optima Fuel Blends

2022-09-13
2022-01-1156
The US Department of Energy’s Co-Optimization of Engine and Fuels Initiative (Co-Optima) investigated how unique properties of bio-blendstocks considered within Co-Optima help address emissions challenges with mixing controlled compression ignition (i.e., conventional diesel combustion) and enable advanced compression ignition modes suitable for implementation in a diesel engine. Additionally, the potential synergies of these Co-Optima technologies in hybrid vehicle applications in the medium- and heavy-duty sector was also investigated. In this work, vehicles system were simulated using the Autonomie software tool for quantifying the benefits of Co-Optima engine technologies for medium-duty trucks. A Class 6 delivery truck with a 6.7 L diesel engine was used for simulations over representative real-world and certification drive cycles with four different powertrains to investigate fuel economy, criteria emissions, and performance.
Technical Paper

Design of a Rule-Based Controller and Parameter Optimization Using a Genetic Algorithm for a Dual-Motor Heavy-Duty Battery Electric Vehicle

2022-03-29
2022-01-0413
This paper describes a configuration and controller, designed using Autonomie,1 for dual-motor battery electric vehicle (BEV) heavy-duty trucks. Based on the literature and current market research, this model was designed with two electric motors, one on the front axle and the other on the rear axle. A rule-based control algorithm was designed for the new dual-motor BEV, based on the model, and the control parameters were optimized by using a genetic algorithm (GA). The model was simulated in diverse driving cycles and gradeability tests. The results show both a good following of the desired cycle and achievement of truck gradeability performance requirements. The simulation results were compared with those of a single-motor BEV and showed reduced energy consumption with the high-efficiency operation of the two motors.
Technical Paper

Medium- and Heavy-Duty Value of Technology Improvement

2022-03-29
2022-01-0529
Improvements in vehicle technology impact the purchase price of a vehicle and its operating cost. In this study, the monetary benefit of a technology improvement includes the potential reduction in vehicle price from using cheaper or smaller components, as well as the discounted value of the fuel cost savings. As technology progresses over time, the value and benefit of improving technology varies as well. In this study, the value of improving a few selected technologies (battery energy density, electric drive efficiency, tire rolling resistance, aerodynamics, light weighting) is studied and the value of the associated cost saving is quantified. The change in saving as a function of time, powertrain selection and vehicle type is also quantified. For example, a 10% reduction in aerodynamic losses is worth $24,222 today but only $8,810 in 2030 in an electric long haul truck. The decrease in value is primarily due to expected battery cost reduction over time.
Technical Paper

Evaluating Emerging Engine and Powertrain Technologies on Globally Popular Vehicle Platforms

2021-09-21
2021-01-1247
This paper examines, for several major markets, the fuel savings achievable with advanced engine technologies as “drop-in” substitutions for existing engines, as well as from increased electric hybridization of the powertrain. Key segments of light duty vehicles in major automotive markets including the US, China, EU, Japan, India, and Saudi Arabia were examined. Representative vehicles for each market were simulated using advanced vehicle modeling tools and evaluated on the relevant local regulatory cycle or cycles. In all cases, to ensure meaningful results, the performance of a given vehicle was maintained as engine and powertrain technology was varied through appropriate resizing of powertrain components. In total, 4 engine technologies and 5 powertrain architectures were simulated for 5 different markets.
Technical Paper

Opportunities for Medium and Heavy Duty Vehicle Fuel Economy Improvements through Hybridization

2021-04-06
2021-01-0717
The objective of this study was to evaluate the fuel saving potential of various hybrid powertrain architectures for medium and heavy duty vehicles. The relative benefit of each powertrain was analyzed, and the observed fuel savings was explained in terms of operational efficiency gains, regenerative braking benefits from powertrain electrification and differences in vehicle curb weight. Vehicles designed for various purposes, namely urban delivery, utility, transit, refuse, drayage, regional and long haul were included in this work. Fuel consumption was measured in regulatory cycles and various real world representative cycles. A diesel-powered conventional powertrain variant was first developed for each case, based on vehicle technical specifications for each type of truck. Autonomie, a simulation tool developed by Argonne National Laboratory, was used for carrying out the vehicle modeling, sizing and fuel economy evaluation.
Technical Paper

Powertrain Choices for Emerging Engine Technologies

2020-04-14
2020-01-0440
The peak efficiency of modern spark ignited engines varies from 36% to 40% depending on the exact technology utilized. Most engines can achieve this peak efficiency for a limited operating region. Multi-speed transmissions allow the engine to operate closer to its most efficient operating regions for more significant portions of operation. In the case of hybrid powertrains, electric machines help in improving engine efficiency by adjusting operating speed and load. Engine shutdown during idle events and low loads is another avenue for improving the overall efficiency. The choice of the ideal powertrain and component sizes depends on the engine characteristics, drive cycles and vehicle technical requirements. This study examines what type of powertrains will be suitable for more efficient engines that are likely to be available in the near future. Some of the new technologies achieve higher efficiency with a trade off on power or by accepting a more restrictive operating region.
Journal Article

Detailed Analysis of U.S. Department of Energy Engine Targets Compared to Existing Engine Technologies

2020-04-14
2020-01-0835
The U.S. Department of Energy, Vehicle Technologies Office (U.S. DOE-VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that would enable the United States to burn less petroleum on the road. System simulation is an accepted approach for evaluating the fuel economy potential of advanced (future) technology targets. U.S. DOE-VTO defines the targets for advancement in powertrain technologies (e.g., engine efficiency targets, battery energy density, lightweighting, etc.) Vehicle system simulation models based on these targets have been generated in Autonomie, reflecting the different EPA classifications of vehicles for different advanced timeframes as part of the DOE Benefits and Scenario (BaSce) Analysis. It is also important to evaluate the progress of these component technical targets compared to existing technologies available in the market.
Technical Paper

Fuel Consumption and Performance Benefits of Electrified Powertrains for Transit Buses

2018-04-03
2018-01-0321
This study presents a process to quantify the fuel saving potential of electrified powertrains for medium and heavy duty vehicles. For this study, equivalent vehicles with electrified powertrains are designed with the underlying principle of not compromising on cargo carrying capacity or performance. Several performance characteristics, that are relevant for all types of medium and heavy duty vehicles, were identified for benchmarking based on the feedback from the industry. Start-stop hybrids, parallel pre-transmission hybrids, plug-in hybrids, and battery electric vehicles are the technology choices in this study. This paper uses one vehicle as an example, explains the component sizing process followed for each powertrain, and examines each powertrain’s fuel saving potential. The process put forth in this paper can be used for evaluating vehicles that belong to all medium and heavy duty classes.
Technical Paper

The Impact of Intake Valve Dynamics on Knock Propensity in a Dual-Fuel SI Engine

2017-10-08
2017-01-2236
In this study, the impact of the intake valve timing on knock propensity is investigated on a dual-fuel engine which leverages a low octane fuel and a high octane fuel to adjust the fuel mixture’s research octane rating (RON) based on operating point. Variations in the intake valve timing have a direct impact on residual gas concentrations due to valve overlap, and also affect the compression pressure and temperature by altering the effective compression ratio (eCR). In this study, it is shown that the fuel RON requirement for a non-knocking condition at a fixed operating point can vary significantly solely due to variations of the intake valve timing. At 2000 rpm and 6 bar IMEP, the fuel RON requirement ranges from 80 to 90 as a function of the intake valve timing, and the valve timing can change the RON requirement from 98 to 104 at 2000 rpm and 14 bar IMEP.
Technical Paper

Influence of Compression Ratio on High Load Performance and Knock Behavior for Gasoline Port-Fuel Injection, Natural Gas Direct Injection and Blended Operation in a Spark Ignition Engine

2017-03-28
2017-01-0661
Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed on a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5.
X