Refine Your Search

Topic

Search Results

Technical Paper

CFD Modeling of Conventional and Pre-Chamber Ignition of a High-Performance Naturally Aspirated Engine

2024-04-09
2024-01-2102
The abatement of carbon dioxide and pollutant emissions on motorbike spark-ignition (SI) engines is a challenging task, considering the small size, the low cost and the high power-to-weight ratio required by the market for such powertrain. In this context, the passive pre-chamber (PPC) technology is an attractive solution. The combustion duration can be reduced by igniting the air-fuel mixture inside a small volume connected to the cylinder, unfolding the way to high engine efficiencies without penalization of the peak performance. Moreover, no injectors are needed inside the PPC, guaranteeing a cheap and fast retrofitting of the existing fleet. In this work, a 3D computational fluid dynamics (CFD) investigation is carried out over an experimental configuration of motorbike SI engine, operated at fixed operating conditions with both traditional and PPC configurations.
Technical Paper

Development of a predictive ECMS based on short-term velocity forecast for a fuel-cell hybrid electric vehicle considering component aging

2023-09-29
2023-32-0179
This study proposes a predictive equivalent consumption minimization strategy (P-ECMS), based on short-term velocity prediction for a heavy-duty fuel cell vehicle while considering fuel cell degradation. The long-short term memory (LSTM) based predictor has been trained on data deriving from realistic driving cycles. The P-ECMS is compared with a typical adaptive-ECMS from the literature, the optimal ECMS, and a rule-based strategy for two different driving cycles in terms of battery SOC sustenance, equivalence factor evolution, hydrogen consumption, and fuel cell degradation. Results show that P-ECMS can reduce hydrogen consumption by up to 3% compared to the reference A-ECMS. It also reduces fuel cell degradation in relation to the optimal ECMS.
Technical Paper

Numerical and Experimental Investigation on Passive Prechamber Configurations Able to Operate at Low Engine Speed and Load

2023-08-28
2023-24-0031
Turbulent Jet Ignition (TJI) represents one of the most effective solution to improve engine efficiency and to reduce fuel consumption and pollutants emission. Even if active prechambers allow a precise control of the air-fuel ratio close to the spark plug and the ignition of ultra-lean mixtures in the main chamber, passive prechambers represent a more attractive solution especially for passenger cars thanks to their simpler and cheaper configuration, which is easier to integrate into existing engines. The main challenge of passive prechambers is to find a geometry that allows to use TJI in the whole engine map, especially in the low load/speed region, without the use of a second sparkplug in the main chamber. To this end, this works reports a CFD study coupled with an experimental investigation to overcome this limitation.
Technical Paper

Experimental and Numerical Analysis of an Active Pre-Chamber Engine Fuelled with Natural Gas

2023-04-11
2023-01-0185
Increasingly stringent pollutant and CO2 emission standards require the car manufacturers to investigate innovative solutions to further improve the fuel economy and environmental impact of their fleets. Nowadays, NOx emissions standards are stringent for spark-ignition (SI) internal combustion engines (ICEs) and many techniques are investigated to limit these emissions. Among these, an extremely lean combustion has a large potential to simultaneously reduce the NOx raw emissions and the fuel consumption of SI ICEs. Engines with pre-chamber ignition system are promising solutions for realizing a high air-fuel ratio which is both ignitable and with an adequate combustion speed. In this work, the combustion characteristics of an active pre-chamber system are experimentally investigated using a single-cylinder research engine. The engine under exam is a large bore heavy-duty unit with an active pre-chamber fuelled with compressed natural gas.
Technical Paper

3D-CFD Methodologies for a Fast and Reliable Design of Ultra-Lean SI Engines

2022-06-14
2022-37-0006
The continuous pursuit of higher combustion efficiencies, as well as the possible usage of synthetic fuels with different properties than fossil-ones, require reliable and low-cost numerical approaches to support and speed-up engines industrial design. In this context, SI engines operated with homogeneous ultra-lean mixtures both characterized by a classical ignition configuration or equipped with an active prechamber represent the most promising solutions. In this work, for the classical ignition arrangement, a 3DCFD strategy to model the impact of the ignition system type on the CCV is developed using the RANS approach for turbulence modelling. The spark-discharge is modelled through a set of Lagrangian particles, whose velocity is modified with a zero-divergence perturbation at each discharge event, then evolved according to the Simplified Langevin Model (SLM) to simulate stochastic interactions with the surrounding gas flow.
Technical Paper

Development of an Adaptive Efficient Thermal/Electric Skipping Control Strategy Applied to a Parallel Plug-in Hybrid Electric Vehicle

2022-03-29
2022-01-0737
In recent years automobile manufacturers focused on an increasing degree of electrification of the powertrains with the aim to reduce pollutants and CO2 emissions. Despite more complex design processes and control strategies, these powertrains offer improved fuel exploitation compared to conventional vehicles thanks to intelligent energy management. A simulation study is here presented aiming at developing a new control strategy for a P3 parallel plug-in hybrid electric vehicle. The simulation model is implemented using vehicle modeling and simulation toolboxes in MATLAB/Simulink. The proposed control strategy is based on an alternative utilization of the electric motor and thermal engine to satisfy the vehicle power demand at the wheels (Efficient Thermal/Electric Skipping Strategy - ETESS). The choice between the two units is realized through a comparison between two equivalent fuel rates, one related to the thermal engine and the other related to the electric consumption.
Technical Paper

Advanced Turbulence Model for SI Combustion in a Heavy-Duty NG Engine

2022-03-29
2022-01-0384
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional liquid fuels to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

Potentials of the Oversizing and H2-Supported Lean Combustion of a VVA SI Gasoline Engine Towards Efficiency Improvement

2021-09-05
2021-24-0007
In recent years, internal combustion engine (ICE) downsizing coupled with turbocharging was considered the most effective path to improve engine efficiency at low load, without penalizing rated power/torque performance at full load. On the other side, issues related to knocking combustion and excessive exhaust gas temperatures obliged adopting countermeasures that highly affect the efficiency, such as fuel enrichment and delayed combustion. Powertrain electrification allows operating the ICE mostly at medium/high loads, shifting design needs and constraints towards targeting high efficiency under those operating conditions. Conversely, engine efficiency at low loads becomes a less important issue. In this track, the aim of this work is the investigation of the potential of the oversizing of a small Variable Valve ActuationSpark Ignition gasoline engine towards efficiency increase and tailpipe emission reduction.
Journal Article

Experimental and 0D Numerical Investigation of Ultra-Lean Combustion Concept to Improve the Efficiency of SI Engine

2021-04-06
2021-01-0384
Recently, the car manufacturers are moving towards innovative Spark Ignition (SI) engine architectures with unconventional combustion concepts, aiming to comply with the stringent regulation imposed by EU and other legislators. The introduction of burdensome cycles for vehicle homologation, indeed, requires an engine characterized by a high efficiency in the most of its operating conditions, for which a conventional SI engine results to be ineffective. Combustion systems which work with very lean air/fuel mixture have demonstrated to be a promising solution to this concern. Higher specific heat ratio, minor heat losses and increased knock resistance indeed allow improving fuel consumption. Additionally, the lower combustion temperatures enable to reduce NOX production. Since conventional SI engines can work with a limited amount of excess air, alternative solutions are being developed to overcome this constraint and reach the above benefit.
Technical Paper

Toward Predictive Combustion Modeling of CNG SI Engines in 1D Simulation Tools

2020-09-15
2020-01-2079
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional fuel to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

Efficient Thermal Electric Skipping Strategy Applied to the Control of Series/Parallel Hybrid Powertrain

2020-04-14
2020-01-1193
The optimal control of hybrid powertrains represents one of the most challenging tasks for the compliance with the legislation concerning CO2 and pollutant emission of vehicles. Most common off-line optimization strategies (Pontryagin minimum principle - PMP - or dynamic programming) allow to identify the optimal control along a predefined driving mission at the expense of a quite relevant computational effort. On-line strategies, suitable for on-vehicle implementation, involve a certain performance degradation depending on their degree of simplification and computational effort. In this work, a simplified control strategy is presented, where the conventional power-split logics, typical of the above-mentioned strategies, is here replaced with an alternative utilization of the thermal and electric units for the vehicle driving (Efficient Thermal Electric Skipping Strategy - ETESS).
Technical Paper

Fuel Consumption and Pollutant Emission Optimization at Part and Full Load of a High-Performance V12 SI Engine by a 1D Model

2019-09-09
2019-24-0080
Modern internal combustion engines show complex architectures in order to improve their performance in terms of brake torque and fuel consumption. Concerning naturally-aspirated engines, an optimization of the intake port geometry, together with the selection of a proper valve timing, allow to improve the cylinder filling and hence the performance. The identification of an optimal calibration strategy at test bench usually requires long and expensive experimental activities. Numerical tools can help to support engine calibration, especially in the early design phases. In the present work, a 12-cylinder naturally aspirated spark ignition engine is investigated. The engine is experimentally tested under full and part load operations. Main performance parameters, in-cylinder pressure cycles and raw pollutant emissions are measured.
Technical Paper

CFD Modeling of Gas Exchange, Fuel-Air Mixing and Combustion in Gasoline Direct-Injection Engines

2019-09-09
2019-24-0095
Gasoline, direct injection engines represent one of the most widely adopted powertrain for passenger cars. However, further development efforts are necessary to meet the future fuel consumption and emission standards imposing an efficiency increase and a reduction of particulate matter emissions. Within this context, computational fluid dynamics is nowadays a consolidated tool to support engine design; this work is focused on the development of a set of CFD models for the prediction of combustion in modern GDI engines. The one-equation Weller model coupled with a zero-dimensional approach to handle initial flame kernel growth was applied to predict flame propagation. To account for mixture fraction fluctuations which might lead to the presence of soot precursor species, burned gas chemical composition is computed using tabulated kinetics with a presumed probability density function.
Technical Paper

A Tabulated-Chemistry Approach Applied to a Quasi-Dimensional Combustion Model for a Fast and Accurate Knock Prediction in Spark-Ignition Engines

2019-04-02
2019-01-0471
The description of knock phenomenon is a critical issue in a combustion model for Spark-Ignition (SI) engines. The most known theory to explain this phenomenon is based on the Auto-Ignition (AI) of the end-gas, ahead the flame front. The accurate description of this process requires the handling of various aspects, such as the impact of the fuel composition, the presence of residual gas or water in the burning mixture, the influence of cool flame heat release, etc. This concern can be faced by the solution of proper chemistry schemes for gasoline blends. Whichever is the modeling environment, either 3D or 0D, the on-line solution of a chemical kinetic scheme drastically affects the computational time. In this paper, a procedure for an accurate and fast prediction of the hydrocarbons auto-ignition, applied to phenomenological SI engine combustion models, is proposed. It is based on a tabulated approach, operated on both ignition delay times and reaction rates.
Technical Paper

A Quasi-Dimensional Model of Pre-Chamber Spark-Ignition Engines

2019-04-02
2019-01-0470
Increasingly stringent pollutant and CO2 emission standards require the car manufacturers to investigate innovative solutions to further improve the fuel economy of their fleets. Among these techniques, an extremely lean combustion has a large potential to simultaneously reduce the NOx raw emissions and the fuel consumption of spark-ignition engines. Application of pre-chamber ignition systems is a promising solution to realize a favorable air/fuel mixture ignitability and an adequate combustion speed, even with very lean mixtures. In this work, the combustion characteristics of an active pre-chamber system are experimentally investigated using a single-cylinder research engine. Conventional gasoline fuel is injected into the main chamber, while the pre-chamber is fed with compressed natural gas. In a first stage, an experimental campaign was carried out at various speeds, spark timings and air-fuel ratios.
Technical Paper

Techniques for CO2 Emission Reduction over a WLTC. A Numerical Comparison of Increased Compression Ratio, Cooled EGR and Water Injection

2018-05-30
2018-37-0008
In this work, various techniques are numerically applied to a base engine - vehicle system to estimate their potential CO2 emission reduction. The reference thermal unit is a downsized turbocharged spark-ignition Variable Valve Actuation (VVA) engine, with a Compression Ratio (CR) of 10. In order to improve its fuel consumption, preserving the original full-load torque, various technologies are considered, including an increased CR, an external low-pressure cooled EGR, and a ported Water Injection (WI). The analyses are carried out by a 1D commercial software (GT-Power™), enhanced by refined user-models for the description of in-cylinder processes, namely turbulence, combustion, heat transfer and knock. The latter were validated with reference to the base engine architecture in previous activities. To minimize the Brake Specific Fuel Consumption (BSFC) all over the engine operating plane, the control parameters of the base and modified engines are calibrated based on PID controllers.
Journal Article

Combined Effects of Valve Strategies, Compression Ratio, Water Injection, and Cooled EGR on the Fuel Consumption of a Small Turbocharged VVA Spark-Ignition Engine

2018-04-03
2018-01-0854
In this work, various techniques are numerically investigated to assess and quantify their relative effectiveness in reducing the Brake Specific Fuel Consumption (BSFC) of a downsized turbocharged spark-ignition Variable Valve Actuation (VVA) engine. The analyzed solutions include the Variable Compression Ratio (VCR), the port Water Injection (WI), and the external cooled Exhaust Gas Recirculation (EGR). The numerical analysis is developed in a 1D modeling framework. The engine is schematized in GT-Power™ environment, employing refined sub-models of the in-cylinder processes, such as the turbulence, combustion, knock, and heat transfer. The combustion and knock models have been extensively validated in previous papers, at different speed/load points and intake valve strategies, including operations with a relevant internal EGR rate and with liquid WI.
Technical Paper

A Comparison Between Two Phenomenological Combustion Models Applied to Different SI Engines

2017-10-08
2017-01-2184
Nowadays, the development of a new engine is becoming more and more complex due to conflicting factors regarding technical, environmental and economic issues. The experimental activity has to comply with the above complexities, resulting in increasing cost and duration of engine development. For this reason, the simulation is becoming even more prominent, thanks to its lower financial burden, together with the need of an improved predictive capability. Among the other numerical approaches, the 1D models represent a proper compromise between reliability and computational effort, especially if the engine behavior has to be investigated over a number of operating conditions. The combustion model has a key role in this contest and the research of consistent approaches is still on going. In this paper, two well-assessed combustion models for Spark Ignition (SI) engines are described and compared: the eddy burn-up theory and the fractal approach.
Journal Article

Extension and Validation of a 1D Model Applied to the Analysis of a Water Injected Turbocharged Spark Ignited Engine at High Loads and over a WLTP Driving Cycle

2017-09-04
2017-24-0014
The technique of liquid Water Injection (WI) at the intake port of downsized boosted SI engines is a promising solution to improve the knock resistance at high loads. In this work, an existing 1D engine model has been extended to improve its ability to simulate the effects of the water injection on the flame propagation speed and knock onset. The new features of the 1D model include an improved treatment of the heat subtracted by the water evaporation, a newly developed correlation for the laminar flame speed, explicitly considering the amount of water in the unburned mixture, and a more detailed kinetic mechanism to predict the auto-ignition characteristics of fuel/air/water mixture. The extended 1D model is validated against experimental data collected at different engine speeds and loads, including knock-limited operation, for a twin-cylinder turbocharged SI engine.
X