Refine Your Search

Search Results

Viewing 1 to 20 of 20
Journal Article

High Pressure Gasoline Direct Injection in Spark Ignition Engines - Efficiency Optimization through Detailed Process Analyses

2016-10-17
2016-01-2244
At part load and wide open throttle operation with stratified charge and lean mixture conditions the Direct Injection Spark Ignition (DISI) engine offers similar efficiency levels compared to compression ignition engines The present paper reports on results of recent studies on the impact of the in-cylinder processes in DISI engines e. g. the injection, the in-cylinder flow, the mixture preparation and the ignition on the combustion, the energy conversion and the exhaust emission behavior. The analyses of the spray behavior, of the in-cylinder flow during compression as well as of the flame propagation have been carried out applying advanced optical measurement techniques. The results enable a targeted optimization of the combustion process with respect to engine efficiency and exhaust emissions. The benefits of an increase in fuel injection pressures up to 100 MPa are discussed.
Journal Article

Experimental Studies on the Occurrence of Low-Speed Pre-Ignition in Turbocharged GDI Engines

2015-04-14
2015-01-0753
In the present paper the results of a set of experimental investigations on LSPI are discussed. The ignition system of a test engine was modified to enable random spark advance in one of the four cylinders. LSPI sequences were successfully triggered and exhibited similar characteristics compared to regularly occurring pre-ignition. Optical investigations applying a high speed camera system enabling a visualization of the combustion process were performed. In a second engine the influence of the physical properties of the considered lubricant on the LSPI frequency was analyzed. In addition different piston ring assemblies have been tested. Moreover an online acquisition of the unburned hydrocarbon emissions in the exhaust gas was performed. The combination of these experimental techniques in the present study provided further insights on the development of LSPI sequences.
Journal Article

Premature Flame Initiation in a Turbocharged DISI Engine - Numerical and Experimental Investigations

2013-04-08
2013-01-0252
This paper presents the results of experimental and numerical investigations on pre-ignition in a series-production turbocharged DISI engine. Previous studies led to the conclusion that pre-ignition can be triggered by auto-ignition of oil droplets generated in the combustion chamber. Analysis of more recent experiments shows that a modification of the engine operation parameters that promotes spray/lubricant interaction also increases pre-ignition frequency, while modifications that enhance the speed of chemical reactions (thereby favoring auto-ignition) have little or no influence. The experimental and numerical findings can be explained if we assume the existence of a substance (originating from lubricant/fuel interaction) that displays extremely short ignition delay times.
Technical Paper

Optical Investigations of the Vaporization Behaviors of Isooctane and an Optical, Non-fluorescing Multicomponent Fuel in a Spark Ignition Direct Injection Engine

2010-10-25
2010-01-2271
Investigations of the fuel injection processes in a spark ignition direct injection engine have been performed for two different fuels. The goal of this research was to determine the differences between isooctane, which is often used as an alternative to gasoline for optical engine investigations, and a special, non-fluorescing, full boiling range multicomponent fuel. The apparent vaporization characteristics of isooctane and the multicomponent fuel were examined in homogeneous operating mode with direct injection during the intake stroke. To this end, simultaneous Mie scattering and planar laser induced fluorescence imaging experiments were performed in a transparent research engine. Both fuels were mixed with 3-Pentanone as a fluorescence tracer. A frequency-quadrupled Nd:YAG laser was used as both the fluorescent excitation source and the light scattering source.
Technical Paper

Use of Ceramic Components in Sliding Systems for High-Pressure Gasoline Fuel Injection Pumps

2010-04-12
2010-01-0600
Spray-guided gasoline direct injection demonstrates great potential to reduce both fuel consumption and pollutant emissions. However, conventional materials used in high-pressure pumps wear severely under fuel injection pressures above 20 MPa as the lubricity and viscosity of gasoline are very low. The use of ceramic components promises to overcome these difficulties and to exploit the full benefits of spray-guided GDI-engines. As part of the Collaborative Research Centre “High performance sliding and friction systems based on advanced ceramics” at Karlsruhe Institute of Technology, a single-piston high-pressure gasoline pump operating at up to 50 MPa has been designed. It consists of 2 fuel-lubricated sliding systems (piston/cylinder and cam/sliding shoe) that are built with ceramic parts. The pump is equipped with force, pressure and temperature sensors in order to assess the behaviour of several material pairs.
Journal Article

Investigations on Pre-Ignition in Highly Supercharged SI Engines

2010-04-12
2010-01-0355
This paper presents the results of a study on reasons for the occurrence of pre-ignition in highly supercharged spark ignition engines. During the study, the phenomena to be taken into account were foremost structured into a decision tree according to their physical working principles. Using this decision tree all conceivable single mechanisms to be considered as reasons for pre-ignition could be derived. In order to judge each of them with respect to their ability to promote pre-ignition in a test engine, experimental investigations as well as numerical simulations were carried out. The interdependence between engine operating conditions and pre-ignition frequency was examined experimentally by varying specific parameters. Additionally, optical measurements using an UV sensitive high-speed camera system were performed to obtain information about the spatial distribution of pre-ignition origins and their progress.
Technical Paper

Knocking Investigations in a small Two-Stroke SI Engine

2009-11-03
2009-32-0013
The trend of higher specific power and increased volumetric efficiency leads to unwanted combustion phenomenon such as knocking, pre-ignition and self-ignition. For four-stroke engines, the literature reports that knocking depends, to a large extent, on the ignition angle, the degree of enrichment and the volumetric efficiency. In recent research, knock investigations in two-stroke engines have only been carried out to a limited extent. This paper discusses an investigation of the influence of various parameters on the knock characteristics of a small, high-speed, two-stroke SI engine. In particular, the degree of enrichment, the volumetric efficiency and the ignition timing serve as the parameters.
Journal Article

Investigations on the Effects of the Ignition Spark with Controlled Autoignition (CAI)

2009-06-15
2009-01-1770
Controlled Autoignition (CAI) is a very promising technology for simultaneous reduction of fuel consumption and engine-out emissions [3, 4, 9, 16]. But the operating range of this combustion mode is limited on the one hand by high pressure gradients with the subsequent occurrence of knocking, increasing NOX-emissions and cyclic variations, and on the other hand by limited operating stability due to low mixture temperatures. At higher loads the required amount of internal EGR decrease to reach self-ignition conditions decrease and hence the influence of the ignition spark gain. The timing of the ignition spark highly influence the combustion process at higher loads. With the ignition spark, pre-reactions are initialized with a defined heat release. Thus the location of inflammation and flame propagation can be strongly influenced and cyclic variations at higher loads can be reduced.
Technical Paper

Application of Multifiber Optics in Handheld Power Tools with High Speed Two-Stroke Gasoline Engines

2006-11-13
2006-32-0060
When developing effective exhaust emission reduction measures, a better understanding of the complex working cycle in crankcase scavenged two-stroke gasoline engines. However, in a two-stroke gasoline engine detailed measurement and analysis of combustion data requires significantly more effort, when compared to a lower speed four-stroke engine. Particularly demanding are the requirements regarding the high speed (>10,000 rpm) which inevitably goes along with heavy vibrations and high temperatures of the air cooled cylinders. Another major challenge to the measuring equipment is the increased cleaning demand of the optical sensor surface due to the two-stroke gasoline mixture. In addition, the measuring equipment has to be adapted to the small size engines. Therefore, only a fiber optical approach can deliver insight into the cylinder for analyzing the combustion performance.
Technical Paper

A New Approach for Three-Dimensional High-Speed Combustion Diagnostics in Internal Combustion Engines

2006-10-16
2006-01-3315
This paper introduces a new measuring and analyzing method for the investigation of the spatial flame propagation in IC engines. Three optical high-speed measuring devices are connected and synchronized in order to detect the flame radiation from different perspectives via fiberoptical endoscopes. The resulting two-dimensional images provide a starting basis for the subsequent reconstruction of the three-dimensional flame geometry. The reconstruction is carried out by a newly developed software tool. The capability of the new methodology has been proven in a first test series. A one-cylinder SI engine with direct-injection is operated in both homogeneous and spray-guided stratified injection mode. Intake flow conditions and air/fuel ratio are varied in order to investigate the effects on flame spread. The volumetric flame developments are analyzed as well as the location of the combustion center in absolute coordinates.
Technical Paper

A New Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in SI Engines

2005-10-24
2005-01-3688
Engines with gasoline direct injection promise an increase in efficiency mainly due to the overall lean mixture and reduced pumping losses at part load. But the near stoichiometric combustion of the stratified mixture with high combustion temperature leads to high NOx emissions. The need for expensive lean NOx catalysts in combination with complex operation strategies may reduce the advantages in efficiency significantly. The Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. The mainly homogeneous lean mixture leads to low combustion temperatures and subsequently to low NOx emissions. By additional EGR a further reduction of the combustion temperature is achievable. The BPI concept is realized by a prechamber spark plug and a piston bowl. The main feature of the concept is its dual injection strategy.
Technical Paper

An Experimental Study of Homogeneous Charge Compression Ignition (HCCI) with Various Compression Ratios, Intake Air Temperatures and Fuels with Port and Direct Fuel Injection

2003-06-23
2003-01-2293
A promising approach for reducing both NOx- and particulate matter emissions with low fuel consumption is the so called homogeneous charge compression ignition (HCCI) combustion process. Single-cylinder engine tests were carried out to assess the influence of several parameters on the HCCI combustion. The experiments were performed both with port fuel injection (PFI) and with direct injection (DI) under various compression ratios, intake air temperatures and EGR-rates. Special emphasis was put on the fuel composition by using different gasoline and diesel fuels as well as n-heptane. Besides engine out emissions (CO2, CO, NO, O2, HC, soot) and in-cylinder pressure indication for burning process analysis, the combustion itself was visualised using an optical probe.
Technical Paper

Influence of Atomization Quality on Mixture Formation, Combustion and Emissions in a MPI-Engine Under Cold-Start Conditions, Part I

2002-10-21
2002-01-2807
The study presented in this two part paper was focused on the influence of primary mixture formation on engine running behavior covering the areas combustion and raw emissions. Two different concepts for primary fuel atomization were utilized and compared, the standard production injector and a flash boiling injector. The spray generated by the flash boiling injector was characterized by a significant reduction in droplet size and a partial direct vaporization during the injection process by preheating the fuel inside the injector. In this study special emphasis was put on the transient process of engine start between typical cooling water temperatures of -7°C and 85°C. Various measurements and visualization techniques were applied to investigate the mixture preparation, the deposition of liquid fuel on the walls, the start of combustion, and in-cylinder and engine-out UHC emissions.
Technical Paper

Influence of Atomization Quality on Mixture Formation, Combustion and Emissions in a MPI-Engine Under Cold-Start Conditions, Part II

2002-10-21
2002-01-2806
The intention of the study presented in this two part paper is to investigate the influence oalf primary mixture formation on engine running behavior, covering the areas of combustion and raw emissions. Two different concepts for primary fuel atomization were utilized and compared, the standard production injector and a flash boiling injector. The flash boiling injector is characterized by a significant reduction in droplet size and a partial direct vaporization during the injection process by preheating the fuel inside the injector. In this study special emphasis was laid on the transient process of engine start between typical cooling water temperatures of -7°C and 85°C. Various measurements and visualization techniques had been applied to investigate mixture preparation, deposition of liquid fuel on the walls, start of combustion, and in-cylinder as well as engine-out UHC emissions.
Technical Paper

Investigations of Mixture Formation and Combustion in Gasoline Direct Injection Engines

2001-09-24
2001-01-3647
The spray propagation and disintegration is investigated in a pressure chamber. With Particle Image Velocimetry the direction and velocity of both, fuel droplets and induced gas flow are detected. By means of shadow photographs the spray cone geometry is visualized. To verify the predictions made of the measurements mentioned above and to rate the quality of the tuning of the parameters in-cylinder gas flow, injection pressure, position of Injector and position of spark plug under real engine conditions, a fast gas sampling valve is used in three different engines. The in-cylinder gas temperature and the soot concentration are measured crank angle resolved by means of the Two-Colour-Method in a 1-cylinder GDI-engine. The soot concentration and temperature show the influence of the injection pressure on emissions like soot and nitric oxide.
Technical Paper

Influence of Mixture Preparation on Combustion and Emissions Inside an SI Engine by Means of Visualization, PIV and IR Thermography During Cold Operating Conditions

1999-10-25
1999-01-3644
The focus of this work was to determine the influence of spray targeting on temperature distributions, combustion progress and unburned hydrocarbon (HC) emissions at cold operating conditions, and to show the capability of model and full engine tests adapted for different measurement techniques. A comprehensive study applying endoscopic visualization, infrared thermography, combustion and emission measurements was carried out in a 4-stroke 4-cylinder 16-valve production engine with intake port injection during different engine operating conditions including injection angle and timing. In addition 2D visualization and PIV measurements were performed in a back-to-back model test section with good optical access to the intake manifold and the combustion chamber. The measurements in both set ups were in good agreement and show that model tests could lead to useful findings for a real engine.
Technical Paper

Optical Investigations on a Mitsubishi GDI-Engine in the Driving Mode

1999-03-01
1999-01-0504
Optical investigations using optical fibres were carried out in the first available direct injection SI-engine, the Mitsubishi GDI, in the driving mode. The optical access to the combustion chamber was realized by 8 optical sensors evenly distributed in a ring on the ground electrode of the standard spark plug. All investigations, steady state (constant load and velocity) and unsteady state (engine starts), show, that there is preferred flame propagation to the intake valves, caused by a reverse tumble in-cylinder flow. As the inflammation depends on thermodynamic conditions, flow characteristics and the actual air/fuel-ratio at the spark plug, the optical sensors can be used to describe the quality of stratification.
Technical Paper

Combustion Control with the Optical Fibre Fitted Production Spark Plug

1998-02-01
980139
Optical measurement technique became more and more common for the last few years. Especially optical fibre technique is often used to detect flame propagation. With optical sensors the ignition process can be investigated with high temporal and spatial resolution. An in-cylinder optical sensor has been developed and tested to analyze the ignition of mixture and luminous emission of burning gas. The sensor consists of eight optical probes fitted in a conventional spark plug. The results show good correlation between measured luminosity and combustion parameters such as load, engine speed, ignition timing and air-fuel mixture ratio. A correlation between development of light intensity and pressure was found. For evaluation of light signals different analysis methods are presented. Furthermore it is shown that the luminosity of the flame can be used to control the combustion process.
Technical Paper

Optical Fiber Technique as a Tool to Improve Combustion Efficiency

1990-10-01
902138
A multi-optical fiber technique is presented, which enables one to detect the flame propagation during non-knocking and knocking conditions in real production engines. The measurement technique is appropriate to detect knock onset locations and to describe the propagation of knocking reaction fronts. With this knowledge, the combustion chamber shape can be optimized, leading to a better knock resistance and higher combustion efficiencies. Results of flame propagation under non-knocking and knocking engine operating conditions are presented. In addition, correlations between knock onset locations and areas in which knock damage occurs are shown for different engines. Presented are the effects of combustion chamber modifications on the combustion efficiency, based on the analysis of the optical fiber measurements.
Technical Paper

Application of a New Optical Fiber Technique for Flame Propagation Diagnostics in IC Engines

1988-10-01
881637
A multi-optical fiber measurement technique is presented which can determine spatial flame propagation with a high temporal resolution. With this measurement technique it is possible to investigate the combustion process in both Diesel and SI engines. The measurement technique can also be applied for the detection of flame propagation in research engines and in actual production engines for performing analysis of special problems such as knocking combustion, combustion chamber design studies which concern flame propagation, the influence of engine parameters on flame propagation, ignition and inflammability behavior. The new measurement technique is discussed in detail and the application of optical measuring points in the combustion chamber walls is demonstrated. A special non-contacting optical transmission system has been developed for the observation of flame propagation.
X