Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

Post-Oxidation Phenomena as a Thermal Management Strategy for Automotive After-Treatment Systems: Assessment by Means of 3D-CFD Virtual Development

2024-04-09
2024-01-2629
The target of the upcoming automotive emission regulations is to promote a fast transition to near-zero emission vehicles. As such, the range of ambient and operating conditions tested in the homologation cycles is broadening. In this context, the proposed work aims to thoroughly investigate the potential of post-oxidation phenomena in reducing the light-off time of a conventional three-way catalyst. The study is carried out on a turbocharged four-cylinder gasoline engine by means of experimental and numerical activities. Post oxidation is achieved through the oxidation of unburned fuel in the exhaust line, exploiting a rich combustion and a secondary air injection dedicated strategy. The CFD methodology consists of two different approaches: the former relies on a full-engine mesh, the latter on a detailed analysis of the chemical reactions occurring in the exhaust line.
Technical Paper

Towards H2 High-Performance IC Engines: Strategies for Control and Abatement of Pollutant Emissions

2023-08-28
2023-24-0108
In future decarbonized scenarios, hydrogen is widely considered as one of the best alternative fuels for internal combustion engines, allowing to achieve zero CO2 emissions at the tailpipe. However, NOx emissions represent the predominant pollutants and their production has to be controlled. In this work different strategies for the control and abatement of pollutant emissions on a H2-fueled high-performance V8 twin turbo 3.9L IC engine are tested. The characterization of pollutant production on a single-cylinder configuration is carried out by means of the 1D code Gasdyn, considering lean and homogeneous conditions. The NOx are extremely low in lean conditions with respect to the emissions legislation limits, while the maximum mass flow rate remains below the turbocharger technical constraint limit at λ=1 only.
Technical Paper

HORIZON Europe Project AeroSolfd: GPF-Retrofit for Cleaner Urban Mobility

2023-08-28
2023-24-0114
Ultrafine particles, in particular solid sub-100 nm particles pose high risks to human health due to their high lung deposition efficiency, translocation to all organs including the brain and their harmful chemical composition; due to dense traffic, the population in urban environments is exposed to high concentrations of those toxic air contaminants, despite these facts, they are still widely neglected. Therefore, the EU-Commission set up a program for clean and competitive solutions for different problem areas which are regarded to be hotspots of such particles. HORIZON AeroSolfd is an EU project, co-funded by Switzerland that will deliver affordable, adaptable, and sustainable retrofit solutions to reduce exhaust tailpipe emissions from petrol engines, brake emissions and pollution in semi-closed environments.
Technical Paper

Analysis and Optimization of Metallic Based Substrates for After-Treatment System by Means of Full-Scale CFD Simulations and Experiments

2023-04-11
2023-01-0369
The tightening trend of regulations on the levels of admitted pollutant emissions has given a great spur to the research work in the field of combustion and after-treatment devices. Despite the improvements that can be applied to the development of the combustion process, pollutant emissions cannot be reduced to zero; for this reason, the aftertreatment system will become a key component in the path to achieving near-zero emission levels. This study focuses on the numerical analysis and optimization of different metallic substrates, specifically developed for three-way catalyst (TWC) and Diesel oxidation catalyst (DOC) applications, to improve their thermal efficiency by reducing radial thermal losses through the outer mantle. The optimization process relies on computational fluid dynamics (CFD) simulations supported by experimental measurements to validate the numerical models carried out under uncoated conditions, where chemical reactions do not occur.
Journal Article

CFD Assessment of an After-Treatment System Equipped with Electrical Heating for the Reduction of the Catalyst Light-Off Time

2023-04-11
2023-01-0366
The reduction of the catalyst light-off time at the engine cold start represents a key factor for the pollutant emissions control from vehicles tested on homologation cycles and real drive conditions. The adoption of heating strategies to increase the temperature of the catalytic substrate in the early phase of the engine start is regarded as a promising solution. The present study focuses on the application of electrical heated catalyst (EHC) in an after-treatment line for a spark-ignition gasoline engine. The analysis is carried out by means of an advanced CFD framework, which includes the modeling of catalytic reactions in the substrates and accounts for the thermal evolution of all the components included in the after-treatment system.
Technical Paper

Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start

2021-09-05
2021-24-0089
In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate.
Technical Paper

Modeling of Three Way Catalyst Behavior Under Steady and Transient Operations in a Stoichiometric Natural Gas Fueled Engine

2021-09-05
2021-24-0074
Methane abatement in the exhaust gas of natural gas engines is much more challenging in respect to the oxidation of other higher order hydrocarbons. Under steady state λ sweep, the methane conversion efficiency is high at exact stoichiometric, and decreases steeply under both slightly rich and slightly lean conditions. Transient lean to rich transitions can improve methane conversion at the rich side. Previous experimental work has attributed the enhanced methane conversion to activation of methane steam reforming. The steam reforming rate, however, attenuates over time and the methane conversion rate gradually converges to the low steady state values. In this work, a reactor model is established to predict steady state and transient transition characteristics of a three-way catalyst (TWC) mounted in the exhaust of a natural gas heavy-duty engine.
Technical Paper

Oxidative Reactivity of Soot Particles Generated from the Combustion of Conventional Diesel, HVO and OME Collected in Particle Filter Structures

2021-09-05
2021-24-0085
The reduction of CO2 emissions in transport and power generation is currently a key challenge. One particular opportunity of CO2 reduction is the introduction of low CO2 or even CO2 neutral fuels. The combustion characteristics of such fuels are different and require engine settings modification. In addition, emissions characteristics differ significantly among different fuels. In the present study a one cylinder diesel engine was operated with conventional diesel, hydrogenated vegetable oil (HVO) and polyoxymethyl dimethyl ether (OME) as well as a series of blends. Particle filter segments were positioned in the exhaust of the engine and loaded with particles originating from the combustion of these fuels. The filter segments have been regenerated individually in a specifically designed and developed controlled temperature soot oxidation apparatus.
Technical Paper

Numerical Optimization of a SCR System Based on the Injection of Pure Gaseous Ammonia for the NOx Reduction in Light-Duty Diesel Engines

2020-04-14
2020-01-0356
Selective Catalytic Reduction (SCR) systems are nowadays widely applied for the reduction of NOx emitted from Diesel engines. The typical process is based on the injection of aqueous urea in the exhaust gases before the SCR catalyst, which determines the production of the ammonia needed for the catalytic reduction of NOx. However, this technology is affected by two main limitations: a) the evaporation of the urea water solution (UWS) requires a sufficiently high temperature of the exhaust gases and b) the formation of solid deposits during the UWS evaporation is a frequent phenomenon which compromise the correct operation of the system. In this context, to overcome these issues, a technology based on the injection of gaseous ammonia has been recently proposed: in this case, ammonia is stored at the solid state in a cartridge containing a Strontium Chloride salt and it is desorbed by means of electrical heating.
Technical Paper

Use of Butanol Blend Fuels on Diesel Engines - Effects on Combustion and Emissions

2020-04-14
2020-01-0333
Butanol, a four-carbon alcohol, is considered in the last years as an interesting alternative fuel, both for Diesel and for gasoline application. Its advantages for engine operation are: good miscibility with gasoline and diesel fuels, higher calorific value than ethanol, lower hygroscopicity, lower corrosivity and possibility of replacing aviation fuels. Like ethanol, butanol can be produced as a biomass-based renewable fuel or from fossil sources. In the research project, DiBut (Diesel and butanol) addition of butanol to Diesel fuel was investigated from the points of view of engine combustion and of influences on exhaust aftertreatment systems and emissions. One investigated engine (E1) was with emission class “EU Stage 3A” for construction machines, another one, engine (E2) was HD Euro VI. The most important findings are: with higher butanol content, there is a lower heat value of the fuel and there is lower torque at full load.
Technical Paper

A Novel 1D Co-Simulation Framework for the Prediction of Tailpipe Emissions under Different IC Engine Operating Conditions

2019-09-09
2019-24-0147
The accurate prediction of pollutant emissions generated by IC engines is a key aspect to guarantee the respect of the emission regulation legislation. This paper describes the approach followed by the authors to achieve a strict numerical coupling of two different 1D modeling tools in a co-simulation environment, aiming at a reliable calculation of engine-out and tailpipe emissions. The main idea is to allow an accurate 1D simulation of the unsteady flows and wave motion inside the intake and exhaust systems, without resorting to an over-simplified geometrical discretization, and to rely on advanced thermodynamic combustion models and kinetic sub-models for the calculation of cylinder-out emissions. A specific fluid dynamic approach is then used to track the chemical composition along the exhaust duct-system, in order to evaluate the conversion efficiency of after-treatment devices, such as TWC, GPF, DPF, DOC, SCR and so on.
Technical Paper

Analysis of TWC Characteristics in a Euro6 Gasoline Light Duty Vehicle

2019-09-09
2019-24-0162
A Euro6 gasoline light duty vehicle has been tested at the engine dynamometer and the emissions have been analyzed upstream and downstream the Three-Way-Catalyst (TWC) during a WLTC cycle. Catalyst simulations have been used for assessing the processes inside the catalytic converter using a reaction scheme based on 19 brutto reactions (direct oxidation and reduction, selective catalytic reductions with CO, C3H6 and H2, steam reforming, water-gas shift and bulk ceria as well as surface ceria reactions). The reactions have been parameterized in order to best approximate the measurements. Based on the reactions taken into account, the real vehicle emissions can be predicted with good accuracy. The simulations show that the cycle emissions comprise mainly the cold start contribution as well as discrete emission break-through events during transients. During cold start no reactions are evident in the catalyst before the temperature of the gas entering the catalyst reaches 270°C.
Technical Paper

Heat Transfer Analysis of Catalytic Converters during Cold Starts

2019-09-09
2019-24-0163
The transient heat transfer behavior of an automotive catalytic converter has been simulated with OpenFOAM in 1D. The model takes into consideration the gas-solid convective heat transfer, axial wall conduction and heat capacity effects in the solid phase, but also the chemical reactions of CO oxidation, based on simplified Arrhenius and Langmuir-Hinshelwood approaches. The associated parameters are the results of data in literature tuned by experiments. Simplified cases of constant flow rates and gas temperatures in the catalyst inflow have been chosen for a comprehensive analysis of the heat and mass transfer phenomena. The impact of inlet flow temperatures and inlet flow rates on the heat up characteristics as well as in the CO emissions have been quantified. A dimensional analysis is proposed and dimensionless temperature difference and space-time coordinates are introduced.
Technical Paper

Direct Evaluation of Turbine Isentropic Efficiency in Turbochargers: CFD Assisted Design of an Innovative Measuring Technique

2019-04-02
2019-01-0324
Turbocharging is playing today a fundamental role not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions for both Spark Ignition and Diesel engines. Dedicated experimental investigations on turbochargers are therefore necessary to assess a better understanding of its performance. The availability of experimental information on turbocharger steady flow performance is an essential requirement to optimize the engine-turbocharger matching, which is usually achieved by means of simulation models. This aspect is even more important when referred to the turbine efficiency, since its swallowing capacity can be accurately evaluated through the measurement of mass flow rate, inlet temperature and pressure ratio across the machine.
Technical Paper

Influences of Butanol Blends on Combustion and Emissions of a Small SI Engine

2018-10-30
2018-32-0058
In the general efforts to replace the fossil fuels in transportation by renewable fuels the bioalcohols are an important alternative. The global share of Bioethanol used for transportation is continuously increasing. Butanol, a four-carbon alcohol, is considered in the last years as an interesting alternative fuel, both for Diesel and for Gasoline application. Its advantages for engine operation are: good miscibility with gasoline and diesel fuels, higher calorific value than Ethanol, lower hygroscopicity, lower corrosivity and possibility of replacing aviation fuels. In the present work research with different nButanol portions in gasoline (BuXX)* was performed on the 2-cylinder SI engine with variations of several parameters on engine dynamometer. At different steady state operating points were varied: spark timing (αz), air excess factor (λ) and EGR-rate. Furthermore, the conversion rates and light-off of a 3-way-catalyst were investigated.
Technical Paper

PN-Emissions of Gasoline Cars MPI and Potentials of GPF

2018-04-03
2018-01-0363
Further efforts to reduce the air pollution from traffic are undertaken worldwide and the filtration of exhaust gas will also be increasingly applied on gasoline cars (GPF1 … gasoline particle filter). In the present paper, some results of investigations of nanoparticles from four MPI gasoline cars are represented. The measurements were performed at vehicle tailpipe and in CVS-tunnel. Moreover, two variants of GPF were investigated on a high-emitting modern vehicle, including analytics of PAH and attempts of soot loading in road application. The modern MPI vehicles can emit a considerable amount of PN, which in some cases attains the level of Diesel exhaust gas without DPF and can pass over the actual European limit value for GDI (6.0 x 1011 #/km). The GPF-technology offers in this respect further poten-tials to reduce the PN-emissions of traffic.
Technical Paper

CFD Investigation of the Impact of Electrical Heating on the Light-off of a Diesel Oxidation Catalyst

2018-04-03
2018-01-0961
In the last years, as a response to the more and more restrictive emission legislation, new devices (SRC, DOC, NOx-trap, DPF) have been progressively introduced as standard components of modern after-treatment system for Diesel engines. In addition, the adoption of electrical heating is nowadays regarded with interest as an effective solution to promote the light-off of the catalyst at low temperature, especially at the start-up of the engine and during the low load operation of the engine typical of the urban drive. In this work, a state-of-the-art 48 V electrical heated catalyst is considered, in order to investigate its effect in increasing the abatement efficiency of a standard DOC. The electrical heating device considered is based on a metallic support, arranged in a spiral layout, and it is heated by the Joule effect due to the passage of the electrical current.
Technical Paper

Experimental Investigation of Fuel Injection and Spark Timing for the Combustion of n-Butanol and iso-Butanol and Their Blends with Gasoline in a Two-Cylinder SI Engine

2017-09-04
2017-24-0115
In this study, the combustion of butanol, neat and mixed with gasoline, was investigated on a 0.6 liter two-cylinder spark ignition engine with fully adjustable fuel injection and spark timing, coupled with an eddy current dynamometer. Two isomers of butanol, n-butanol and iso-butanol, were examined. This basic parameter study gives information about potential requirements of engine control systems for butanol FFV. Compared to the traditionally used ethanol, butanol does not exhibit hygroscopic behaviour, is chemically less aggressive and has higher energy density. On other hand, different laminar burning velocity and higher boiling temperature of butanol, compared to gasoline, requires some countermeasures to keep the engine operation reliable and efficient.
Technical Paper

Nanoparticle Emissions of DI Gasoline Cars with/without GPF

2017-03-28
2017-01-1004
In the present paper some results of investigations of nanoparticles from five DI gasoline cars are represented. The measurements were performed at vehicle tailpipe and in CVS-tunnel. Moreover, five variants of “vehicle - GPF” were investigated. These results originate from the project GasOMeP (Gasoline Organic & Metal Particulates), which focused on metal-nanoparticles (including sub 20nm) from gasoline cars with different engine technologies. The PN-emission level of the investigated GDI cars in WLTC without GPF is in the same range of magnitude very near to the actual limit value of 6.0 × 1012 #/km. With the GPF’s with better filtration quality, it is possible to lower the emissions below the future limit value of 6.0 × 1011 #/km. There is no visible nuclei mode and the ultrafine particle concentrations below 10mm are insignificant. Some of the vehicles show at constant speed operation a periodical fluctuation of the NP-emissions, as an effect of the electronic control.
X