Refine Your Search

Topic

Author

Search Results

Journal Article

NVH of Electric Vehicles with Range Extender

2010-06-09
2010-01-1404
Intensive R&D is currently performed worldwide on hybrid and electric vehicles. For full electric vehicles the driving range is limited by the capacity of currently available batteries. If such a vehicle shall increase its driving range some range extending backup system should be available. Such a Range Extender is a small system of combustion engine and electric generator which produces the required electricity for charging the batteries in time. Since the acoustic response of an electric motor driving the vehicle and of a combustion engine as part of a Range Extender is very different by nature an extensive acoustic tuning of the Range Extender is necessary to meet the requirements of exterior vehicle noise and passenger comfort. This paper describes the NVH (noise, vibration & harshness) development work of a range extender within the AVL approach of an electrically driven passenger car with range extender.
Technical Paper

Hybrid-Powertrain Development Approach to Reduce Number of Prototype Vehicles by Taking Right Decision in Early Development Phases on Engine Testbeds

2021-09-22
2021-26-0449
Today’s automotive industry is changing rapidly towards environmentally friendly vehicle propulsion systems. All over the globe, legislative CO2 consumption targets are under discussion and partly already in force. Hybrid powertrain configurations are capable to lower fuel consumption and limit pollutant emissions compared to pure IC-Engine driven powertrains. Depending on boundary conditions a numerous of different hybrid topologies- and its control strategies are thinkable. Typical approach is to find the optimum hybrid layout and strategy, by performing certain technical design tasks in office simulation directly followed by vehicle prototype tests on the chassis dyno and road. This leads to a high number of prototype vehicles, overload on chassis dynos, time consuming road test and finally to tremendous costs. Our developed approach is using the engine testbed with simulation capabilities as bridging element between office and vehicle development environment.
Journal Article

Definition of Gearshift Pattern: Innovative Optimization Procedures Using System Simulation

2011-04-12
2011-01-0395
Today's powertrains are becoming more and more complex due to the increasing number of gear box types requiring gearshift patterns like conventional (equipped with GSI) and automatic-manual transmissions (AT, AMT), double clutch and continuous variable transmissions (DCT, CVT). This increasing variety of gear boxes requires a higher effort for the overall optimization of the powertrain. At the same time, it is necessary to assess the impact of different powertrains and control strategies on CO₂ emissions very early in the development process. The optimization of Gear Shift Patterns (G.S.P.) has to fulfill multiple constraints in terms of objective customers' requirements, like driveability, NVH, performance, emissions and fuel consumption. For these reasons, RENAULT and AVL entered an engineering collaboration in order to develop a dedicated simulation tool: CRUISE GSP.
Journal Article

A ‘Microscopic’ Structural Mechanics FE Model of a Lithium-Ion Pouch Cell for Quasi-Static Load Cases

2013-04-08
2013-01-1519
This study deals with the experimental investigation of the mechanical properties of a lithium-ion pouch cell and its modelling in an explicit finite element simulation code. One can distinguish between ‘macroscopic’ and ‘microscopic’ modelling approaches. In the ‘macroscopic’ approach, one material model approximates the behaviour of multiple inner cell layers. In the ‘microscopic’ approach, which is used in the present study, all layers and their interactions are modelled separately. The cell under study is a pouch-type lithium-ion cell with a liquid electrolyte. With its cell chemistry, design, size and capacity it is usable for automotive applications and can be assembled into traction batteries. One cell sample was fully discharged and disassembled, and its components (anode, cathode, separator and pouch) were examined and measured by electron microscopy. Components were also tensile tested.
Technical Paper

Model-Based Brake Disc Temperature Prediction on High Speed Testing Mode and Circuit

2020-04-14
2020-01-0214
A brake is a mechanical device that inhibits the motion by absorbing energy from a moving system. It is used for slowing or stopping a moving vehicle, wheel, axle, or to prevent its motion, most often accomplished by friction energy. Commonly, most brakes use friction between two surfaces pressed together to convert the kinetic energy of the moving object into heat, though other methods of energy conversion may be employed. If braking is repeated or sustained in high load or high-speed conditions, the motion will be unstable and can lead to a loss of stopping power because the disc capability for braking is not enough. These phenomena are generally defined as brake fading. Brake fade is caused by an overheating brake system. This paper describes the thermal modeling and process to predict the disk temperature under a condition which causes the fade characteristics.
Technical Paper

Crank-Angle Resolved Real-Time Capable Engine and Vehicle Simulation - Fuel Consumption and Driving Performance

2010-04-12
2010-01-0784
The present work introduces a fully integrated real-time (RT) capable engine and vehicle model. The gas path and drive line are described in the time domain of seconds whereas the reciprocating characteristics of an IC engine are reflected by a crank angle resolved cylinder model. The RT engine model is derived from a high fidelity 1D cycle simulation and gas exchange model to support an efficient and consistent transfer of model data like geometries, heat transfer or combustion. The workflow of model calibration and application is outlined and base ECU functionalities for boost pressure, EGR, smoke and idle speed control are applied for transient engine operation. Steady state results of the RT engine model are compared to experimental data and 1D high fidelity simulations for 19 different engine load points. In addition an NEDC (New European Drive Cycle) is simulated and results are evaluated with data from chassis dynamometer measurements.
Technical Paper

Automated EMS Calibration using Objective Driveability Assessment and Computer Aided Optimization Methods

2002-03-04
2002-01-0849
Future demands regarding emissions, fuel consumption and driveability lead to complex engine and power train control systems. The calibration of the increasing number of free parameters in the ECU's contradicts the demand for reduced time in the power train development cycle. This paper will focus on the automatic, unmanned closed loop optimization of driveability quality on a high dynamic engine test bed. The collaboration of three advanced methods will be presented: Objective real time driveability assessment, to predict the expected feelings of the buyers of the car Automatic computer assisted variation of ECU parameters on the basis of statistical methods like design of experiments (DoE). Thus data are measured in an automated process allowing an optimization based on models (e.g. neural networks).
Technical Paper

Crank-Angle Resolved Modeling of Fuel Injection, Combustion and Emission Formation for Engine Optimization and Calibration on Real-Time Systems

2016-04-05
2016-01-0558
The present work introduces an innovative mechanistically based 0D spray model which is coupled to a combustion model on the basis of an advanced mixture controlled combustion approach. The model calculates the rate of heat release based on the injection rate profile and the in-cylinder state. The air/fuel distribution in the spray is predicted based on momentum conservation by applying first principles. On the basis of the 2-zone cylinder framework, NOx emissions are calculated by the Zeldovich mechanism. The combustion and emission models are calibrated and validated with a series of dedicated test bed data specifically revealing its capability of describing the impact of variations of EGR, injection timing, and injection pressure. A model based optimization is carried out, aiming at an optimum trade-off between fuel consumption and engine-out emissions. The findings serve to estimate an economic optimum point in the NOx/BSFC trade-off.
Technical Paper

Challenges and Solutions for Range Extenders - From Concept Considerations to Practical Experiences

2011-06-09
2011-37-0019
For a broad acceptance of electric vehicles, the trade-off between all electric range and battery cost respectively weight represents the most important challenge. The all electric range obtained under real world conditions most often deviates significantly from the nominal value which is measured under idealized conditions. Under extreme conditions - slow traffic and demanding requirements for cabin heating or cooling - the electrical range might become less a question of spatial distance but even more of total operation time. Whereas with conventional powertrain, high flexibility of the total driving range can be obtained without sacrificing cost, with a pure battery vehicle this results in extreme high cost and weight of the energy storage. Therefore the difference between the typical daily driving range (e.g. in Germany 80-90% is below 50 km) and the minimum total range requested by most customers for acceptance of battery vehicles (200- 250 km), becomes essential.
Technical Paper

System Design Model for Parallel Hybrid Powertrains using Design of Experiments

2018-04-03
2018-01-0417
The paper focuses on an optimization methodology, which uses Design of Experiments (DoE) methods to define component parameters of parallel hybrid powertrains such as number of gears, transmission spread, gear ratios, progression factor, electric motor power, electric motor nominal speed, battery voltage and cell capacity. Target is to find the optimal configuration based on specific customer targets (e.g. fuel consumption, performance targets). In the method developed here, the hybrid drive train configuration and the combustion engine are considered as fixed components. The introduced methodology is able to reduce development time and to increase output quality of the early system definition phase. The output parameters are used as a first hint for subsequently performed detailed component development. The methodology integrates existing software tools like AVL CRUISE [5] and AVL CAMEO [1].
Technical Paper

Concepts for Mechanical Abuse Testing of High-Voltage Batteries

2012-04-16
2012-01-0124
Currently lithium-batteries are the most promising electrical-energy storage technology in fully-electric and hybrid vehicles. A crashworthy battery-design is among the numerous challenges development of electric-vehicles has to face. Besides of safe normal operation, the battery-design shall provide marginal threat to human health and environment in case of mechanical damage. Numerous mechanical abuse-tests were performed to identify load limits and the battery's response to damage. Cost-efficient testing is provided by taking into account that the battery-system's response to abuse might already be observed at a lower integration-level, not requiring testing of the entire pack. The most feasible tests and configurations were compiled and discussed. Adaptions of and additions to existing requirements and test-procedures as defined in standards are pointed out. Critical conditions that can occur during and after testing set new requirements to labs and test-rigs.
Technical Paper

A Computational Study on the Impact of Cycle-to-Cycle Combustion Fluctuations on Fuel Consumption and Knock in Steady-State and Drivecycle Operation

2013-09-08
2013-24-0030
In spark-ignition engines, fluctuations of the in-cylinder pressure trace and the apparent rate of heat release are usually observed from one cycle to another. These Cycle-to-Cycle Variations (CCV) are affected by the early flame development and the subsequent flame front propagation. The CCV are responsible for engine performance (e.g. fuel consumption) and the knock behavior. The occurrence of the phenomena is unpredictable and the stochastic nature offers challenges in the optimization of engine control strategies. In the present work, CCV are analyzed in terms of their impact on the engine knock behavior and the related efficiency. Target is to estimate the possible fuel consumption savings in steady-state operation and in the drivecycle, when CCV are reduced. Since CCV are immanent on real engines, such a study can only be done by means of simulation.
Technical Paper

Challenges and Opportunities of Variant Calibration of Hybrid Vehicles

2013-03-25
2013-01-0128
The automotive industry is racing to introduce some degree of hybridization into their product ranges. Since the term "hybrid vehicle" can cover a wide range of differing technologies and drivetrain topologies, this has led to a plethora of vehicles that call them "hybrid." This poses an interesting challenge for marketers to differentiate these vehicles from the incumbents. However, it is not just the marketers who are faced with challenges, the developers of such hybrid drivetrains are faced with a rise in technical complexity due to the wide range of operating modes hybridization introduces. As propulsive torque is being generated in more than one place in a hybrid vehicle, the transitions from conventional drive to electrically supported drive bring with them complex aspects of multi-dimensional system control. The challenge is to be able to implement hybrid technology in an existing drivetrain, while adapting the existing components as required.
Technical Paper

Fast Charging at Cold Conditions—Model-Based Control Enabled by Multi-Scale Multi-Domain Plant Model

2022-03-29
2022-01-0702
Fast charging of batteries at cold conditions faces the challenge of promoting undesired cell degradation phenomena such as lithium plating. The occurrence of lithium plating is strongly related to local surface potentials and temperatures involving the scales of the electrode surface, the unit cell and the entire module or pack. A multi-scale, multi-domain model is presented, enhancing a Newman based unit cell model with consistent models for heat generation and lithium plating and integrating this 1D+1D approach into a thermal 3D model on module level. The basic equations are presented and three different plating models from literature are discussed. The thermal model is assessed in open-loop simulations and the different plating approaches are compared in charge/discharge simulations at different operating conditions. The full multi-scale, multi-domain model is applied as a virtual sensor for model-based control of fast charging at cold conditions.
Technical Paper

Low Frequency Impedance Spectroscopy – Modeling Study on the Transferability of Solid Diffusion Coefficients

2023-04-11
2023-01-0505
This work elaborates the transferability of electrode diffusion coefficients gained from fitting procedures in frequency domain to an electrochemical battery model run in time domain. An electrochemical battery model of an NMC622 half-cell electrode is simulated with sinusoidal current excitations at different frequencies. The current and voltage signals are analyzed in frequency domain via Nyquist and Bode plots. The frequency domain analysis of time domain simulations is applied to assess the numerical convergence of the simulation and the sensitivity on particle diameter, electrode and electrolyte diffusion coefficients. The simulated frequency spectra are used to fit the electrode diffusion coefficient by means of different electrical equivalent circuit models and the electrochemical battery model itself. The fitted diffusion coefficients from the different electrical equivalent circuit models deviate by one order of magnitude from the a priori known reference data.
Technical Paper

A Simulation Approach for Vehicle Life-Time Thermal Analysis Applied to a HEV Battery System

2016-04-05
2016-01-0201
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Global vehicle simulation is already a well-established tool to support the vehicle development process. In contrast to conventional vehicles, electrified powertrains offer an additional challenge to the thermal conditioning: the durability of E-components is not only influenced by temperature peaks but also by the duration and amplitude of temperature swings as well as temperature gradients within the components during their lifetime. Keeping all components always at the preferred lowest temperature level to avoid ageing under any conditions (driving, parking, etc.) will result in very high energy consumption which is in contradiction to the efficiency targets.
Technical Paper

A Scalable Simulation Method for the Assessment of Cycle-to-Cycle Combustion Variations and their impact on Fuel Consumption and Knock

2015-01-14
2015-26-0213
In the present work, a scalable simulation methodology is presented that enables the assessment of the impact of SI-engine cycle-to-cycle combustion variations on fuel consumption and hence CO2 emissions on three different levels of modeling depth: in-cylinder, steady-state engine and transient engine and vehicle simulation. On the detailed engine combustion chamber level, a 3D-CFD approach is used to study the impact of the turbulent in-cylinder flow on the cycle-resolved flame propagation characteristics. On engine level, cycle-to-cycle combustion variations are assessed regarding their impact on indicated mean effective pressure, aiming at estimating the possible fuel consumption savings when cyclic variations are minimized. Finally, on the vehicle system level, a combined real-time engine approach with crank-angle resolved cylinder is used to assess the potential fuel consumption savings for different vehicle drivecycle conditions.
Technical Paper

Challenges and Opportunities in Variant Calibration of Hybrid Vehicles

2014-10-13
2014-01-2889
The automotive industry is racing to introduce some degree of hybridization into their product ranges. Since the term “hybrid vehicle” can cover a wide range of differing technologies and drivetrain topologies, this has led to a large amount of vehicles that call themselves “hybrid”. This poses an interesting challenge for marketers to differentiate these vehicles from the incumbents. However, it is not just the marketers who are faced with challenges, the developers of such hybrid drivetrains are faced with a rise in technical complexity due to the wide range of operating modes hybridization introduces. As propulsive torque is being generated in more than one place in a hybrid vehicle, the transitions from conventional drive to electrically supported drive bring with them complex aspects of multi-dimensional system control. The challenge is to be able to implement hybrid technology in an existing drivetrain, while adapting the existing components as required.
Technical Paper

An Application of the Linear and Time-Invariant Method for the System-Level Thermal Simulation of an EV Battery

2015-04-14
2015-01-1197
This paper presents a system-level thermal model of a fluid-cooled Li-Ion battery module. The model is a reduced order model (ROM) identified by results from finite element analysis (FEA)/computational fluid dynamic (CFD) coupling simulation using the linear and time-invariant (LTI) method. The ROM consists of two LTI sub-systems: one of which describes the battery temperature response to a transient battery current, and the other of which takes into account of the battery temperature variation due to a heat flux induced by a varied inlet temperature of the battery cooling circuit. The thermal LTI model can be coupled to an electrical model to build a complete system-level battery ROM. Test examples show that the ROM is able to provide as accurate results as those from FEA/CFD coupling simulations.
Technical Paper

Vehicle Thermal Management Simulation Method Integrated in the Development Process from Scratch to Prototype

2014-04-01
2014-01-0668
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Furthermore the increasing number of vehicle configurations leads to a high variability and degrees of freedom in possible system designs and the control thereof, which can only be handled by a comprehensive tool chain of vehicle system simulation and a generic control system architecture. The required model must comprise all relevant systems of the vehicle (control functionality, cooling system, lubrication system, engine, drive train, HV components etc.). For proper prediction with respect to energy consumption all interactions and interdependencies of those systems have to be taken into consideration, i.e. all energy fluxes (mechanical, hydraulically, electrical, thermal) have to be exchanged among the system boundaries accordingly.
X