Refine Your Search

Topic

Author

Search Results

Journal Article

Development of the All-Surface Plated Smart Handle Through In-Vapor Deposition Technology

2016-04-05
2016-01-0543
There are such outside door handles called smart handles which have a transmitting antenna, a lock/unlock sensor, and a sensor detection circuit, with which operation of door lock is possible just by "touching" the electrostatic-capacitance type sensor of the handles.As the design of the outside handles, body color painting and Cr plating are adopted. However, if plating is applied over the entire surface of a smart handle, electromagnetic waves transmitted from the antenna will be blocked since plating material is electrically conductive. In addition to this, touching a part other than the sensor may change the electrostatic-capacitance of the sensor, which results in unwanted functioning of the lock/unlock sensor. Because of this, only part of the handle, which does not hinder the transmission of electromagnetic waves and does not cause unwanted functioning, is covered by plating, that is called, "Partially plated specifications" (Figure 1).
Journal Article

Development of Engine Lubrication System with New Internal Gear Fully Variable Discharge Oil Pump

2017-10-08
2017-01-2431
Over the past decades, the automotive industry has made significant efforts to improve engine fuel economy by reducing mechanical friction. Reducing friction under cold conditions is becoming more important in hybrid vehicle (HV) and plug-in hybrid vehicle (PHV) systems due to the lower oil temperatures of these systems, which results in higher friction loss. To help resolve this issue, a new internal gear fully variable discharge oil pump (F-VDOP) was developed. This new oil pump can control the oil pressure freely over a temperature range from -10°C to hot conditions. At 20°C, this pump lowers the minimum main gallery pressure to 100 kPa, thereby achieving a friction reduction effect of 1.4 Nm. The developed oil pump achieves a pressure response time constant of 0.17 seconds when changing the oil pressure from 120 kPa to 200 kPa at a temperature of 20°C and an engine speed of 1,600 rpm.
Technical Paper

Study on Stabilization Friction Coefficient of Disc Brake Pads in Cold Condition

1997-10-06
973030
Resolving the brake squeal that occurs under various environments is a major topic, and a resolution method is eagerly anticipated. We focused on the phenomenon that, amid various environmental conditions, squeal occurs easily when an automobile has been left standing in a cold environment. We checked the details focusing on the friction coefficient (hereafter, μ). As a result, we found that μ increases when squeal is generated, and that the sliding surface film contributes to the μ behavior. We studied measures to be taken to increase the μ in cold conditions.
Technical Paper

Development of Switched Reluctance Motor for EV Traction System

2001-03-05
2001-01-0957
Switched Reluctance Motor (SRM) mainly has two advantageous characteristics such as no magnet and simple construction. These characteristics contribute lower cost and higher reliability compared with other motor systems such as brushless permanent magnet motors or induction motors. However, acoustic noise and output torque ripple should be improved when the SRM is applied to a traction system for passenger electric vehicle since these characteristics directly affect vehicle quietness and drivability. In this paper, we describe a system configuration of the SRM traction system for passenger electric vehicle. The SRM traction system includes an electric motor, transmission gears and power inverter module. Then, an approach to improve acoustic noise and output torque ripple is introduced. Generation mechanisms of acoustic noise and output torque ripple are analyzed.
Technical Paper

Development of 4WS Control Algorithm for a SUV

2002-03-04
2002-01-1216
Sport Utility Vehicles (SUV) and light duty trucks have gained in popularity for the last several years and the demand for more car-like behavior has increased, accordingly. Two areas for potential improvement are vehicle stability and maneuverability while parking. 4WS (4 wheel steering system) is known as an effective solution to stability and low speed maneuverability. In this paper, we identify a new systematic design method of two degree of freedom vehicle state feedback control algorithm that can improve vehicle stability, and show its control effects for a SUV with trailer towing. Low speed maneuvering is improved when the rear tires are steered in negative phase relative to the front tires. However with a large rear steer angle at low speed, the vehicle's rear overhang tracks a wider swing-out path than a 2WS vehicle. For this concern, we propose a new swing-out reduction control algorithm.
Technical Paper

Development of Variable Displacement Oil Pump for Automotive Active Suspension

1992-02-01
920269
A new variable displacement pump has been developed. This pump can variably change its discharged flow rate in accordance with the revolution changes of an automotive engine from idling engine speed to 6000rpm. It can quickly discharge oil necessary for controlling the autmotive active suspension system. This pump is of a swash plate, axial piston type which controls optimal fluid flow in time by using a pressure sensing control valve. Further, in order to improve the quietness in the vehicle system, the pulsation of the pump pressure was reduced and this pump's utility was realized for automobile use. This is a report on how the pump was introduced for commercial automobile use.
Technical Paper

Vibration Analysis of Control Valve for Active Suspension

1992-02-01
920272
An active suspension system controls a spring constant and an attenuater in real time using a power supply. Generally, the hydraulic pressures are used for transmitting the power. Therefore, a highly reliable and inexpensive control system has been required for a commercial use. This has been achieved by developing a mechanical fluid servo valve which comprises a simple combination of a solenoid valve and a spool valve. The technical problem of the valve vibrations has been solved through the numerical analyses, the fluid flow visualization tests and the vehicle tests.
Technical Paper

Development of Compact Electric Rear-Drive Unit

2016-04-05
2016-01-1104
We have developed an electric rear-drive unit to enable all-wheel drive (AWD) applications to the compact FF hybrid passenger vehicles. The development is intended to provide a compact and low cost unit with low fuel consumption. The unit newly introduces a two-axis gear train that enables a compact design, an induction motor and an ATF (automatic transmission fluid) stirring resistance restraining structure that contribute to lower fuel consumption. This paper presents the features and performance of the electric rear-drive unit.
Technical Paper

Development of the Synchronizer-Less System for HV-AMT

2016-04-05
2016-01-1172
Recently, for the aspects of ecology and economy, fuel efficiency improvement demand has been increased globally. And, various types of hybrid systems have been suggested. In response to this market demand, AISIN SEIKI has been developing Synchronizer-less hybrid automated manual transmission (HV-AMT) system aiming excellent transmission efficiency, excellent agility, and shift change quality like a step automatic transmission (AT). This hybrid system is constructed based upon a parallel 2-axis manual transmission (MT) which originally has high transmission efficiency. The synchronizer system of a MT is replaced by a Dog clutch system which does not spoil the transmission efficiency and never makes failure in synchronization. This Dog clutch system includes a modified detent function, a shift actuator of linear motor, advanced function controls for a clutch and a shift actuator.
Technical Paper

Development of Hybrid Powertrain System for Small Vehicles

2016-04-05
2016-01-1171
Electrification of the powertrain to improve vehicle fuel economy is a key technology to achieve strict fuel economy legislation. However, only limited numbers of small class vehicles such as a B segment adopt electric powertrain. This is presumed that cost effectiveness for fuel economy is small and mounting space for additional powertrain is limited. In this paper, the optimum solution of a strong hybrid system suitable for the small vehicles was studied. First, from the viewpoint of maximization of energy efficiency, we compared contributions of engine efficiency and transmission efficiency during mode cycle driving and selected automated manual transmission as a suitable transmission for small vehicles. In comparing the hybrid system function, we determined a motor generator connecting shaft and a necessary motor generator output power for attaining both fuel economy and drivability.
Technical Paper

Development of Continuously Variable Discharge Oil Pump

2018-04-03
2018-01-0932
Recently, for the protection of the environment, the regulation of automobile fuel consumption and exhaust gas emission has been strengthened. To improve fuel economy, it is demanded that each engine part contributes to reducing the workload of the engine, even the engine lubrication oil pump. In response to this, a new variable discharge oil pump was developed. It is the world's first internal gear type oil pump that has electronically controlled continuously variable discharge. The work performed by the pump chiefly takes two forms: sliding friction of the rotor and pumping work which moves the oil. First, in developing a variable discharge oil pump, a new tooth profile of the rotor was developed to reduce its sliding friction. As a result, the sliding friction of the rotor was reduced by 34% while maintaining the same theoretical oil discharge rate. Next, a variable discharge mechanism using an internal gear was developed.
Technical Paper

Preview Ride Comfort Control for Electric Active Suspension (eActive3)

2014-04-01
2014-01-0057
This paper reports the results of a study into a preview control that uses the displacement of the road surface in front of the vehicle to improve for front and rear actuator responsiveness delays, as well as delays due to calculation, communication, and the like. This study also examined the effect of a preview control using the eActive3 electric active suspension system, which is capable of controlling the roll, pitch, and warp modes of vehicle motion.
Technical Paper

Newly Developed Long-Life Potentiometer for Automobiles

1993-10-01
932868
Aiming at improved reliability and cost reduction of position sensors for automobiles, we tackled with the challenge of developing long life contact type potentiometer which has a simple construction and cost advantage. We made clear the wear characteristics of the resistor materials and the mechanism how noise occurs, and developed a long life, low noise resistor material, and the double - layer resistor structure which has excellent characteristic in durability. We also clarified the ways of using brushes according to applications through the investigation of the relationship between the contact shape and the amount of wear of the resistor. Based on these investigation, we have developed a highly reliable throttle position sensor and a long life vehicle height sensor.
Technical Paper

Development of New Aisin Transmission for Medium Duty Truck and Bus

1994-11-01
942283
AISIN SEIKI CO., Ltd. Started the production of electronically controlled hydraulic automatic transmissions for medium-duty trucks and buses in 1989. The number of vehicles on the Japanese market in which this system is adopted is increasing steadily. After re-examining market needs, AISIN SEIKI CO., Ltd. has newly developed an electronically controlled hydraulic automatic transmission A580 which focuses on improved input capacity, driving performance and fuel economy for medium-duty trucks and buses and lessens learnt from experience.
Technical Paper

Hydrogen Added After-Burner System

1996-02-01
960346
We developed a hydrogen-added after-burner system for a new catalyst heating system, which realized large reduction of emissions during start-up at low temperatures when Hydro-Carbon (HC) emission was rather high. Key development items of this system are a water electrolysis type small size on-bord hydrogen supply unit and engine matching technique for the verification of emission reduction effects.
Technical Paper

Improvement of Vehicle Directional Stability for Transient Steering Maneuvers Using Active Brake Control

1996-02-01
960485
In this paper, we discuss vehicle directional stability and introduce advanced stability control (ASTC) to stabilize the vehicle during severe cornering. Vehicle behavior in a transient steering condition during severe cornering was analyzed by computer simulation. It was found that applying an external yaw moment makes the vehicle more stable. The effect of controlling the brake force response is also evaluated by simulation to determine the brake actuator response criteria. The actual vehicle test was performed with a pylon slalom using a hydraulic brake actuator. It is verified that the ASTC stabilizes the vehicle for transient steering maneuvers.
Technical Paper

Wheel Speed Sensor Applying the Eddy Current Effect Through the High-Frequency Modulated Magnetic Field

1996-02-01
960755
This active-drive wheel speed sensor, developed by the high-frequency magnetic system, enables detection of very slow wheel speeds - hitherto difficult to accomplish with any conventional type of Magnetic Pick up - by applying the eddy current effect through the high-frequency magnetic field. The following report presents an analysis of the magnetic circuit which integrates the magnetic-field generating coil with the detection rotor, and the unique circuit system which ensures strength against eccentricity of the wheel rotor and air gap variations, etc.
Technical Paper

Development of Shape Memory Alloy Spring for Oil Flow Control Valve in Clutch System

1996-02-01
960979
Drive train components (transmission, differential gears, etc.) can be made smaller and lighter if the excessive torque exerted on them can be reduced during the quick start of a vehicle. An orifice put in the hydraulic clutch piping path is an effective method. However, increased oil viscosity at low temperatures (0°C or below) makes the “pedal feel” worse. In order to increase the orifice diameter for better “pedal feel”, a shape memory alloy spring, for operation at low temperatures, was developed by adding cobalt to the nickel-titanium alloy. Consequently, a Variable-Orifice valve, using the shape memory alloy spring, is practical.
Technical Paper

Development of Robust Motor Servo Control for Rear Steering Actuator Based on Two-Degree-of-Freedom Control System

1999-03-01
1999-01-0402
Rear steering system can improve vehicle stability using active control of the rear wheel angles. For designing the rear steering system, environmental conditions, performance deterioration due to aging and component variation as a result of manufacturing tolerance under mass production must be taken into consideration. We have applied two-degree-of-freedom (2DOF) feedback control with feedforward control for the motor servo control so that the rear steering actuator can track the target rear steering angle accurately and stably. The control system is designed based upon a nominal mathematical model and its variation range. As a result, the rear steering actuator can be controlled with excellent performance and high reliability. This paper describes the mathematical model construction in the frequency domain and a robust motor servo controller design based on 2DOF feedback control with feedforward control.
X