Refine Your Search

Topic

Author

Search Results

Video

Beyond MPG: Characterizing and Conveying the Efficiency of Advanced Plug-In Vehicles 

2011-11-08
Research in plug in vehicles (PHEV and BEV) has of course been ongoing for decades, however now that these vehicles are finally being produced for a mass market an intense focus over the last few years has been given to proper evaluation techniques and standard information to effectively convey efficiency information to potential consumers. The first challenge is the development of suitable test procedures. Thanks to many contributions from SAE members, these test procedures have been developed for PHEVs (SAE J1711 now available) and are under development for BEVs (SAE J1634 available later this year). A bigger challenge, however, is taking the outputs of these test results and dealing with the issue of off-board electrical energy consumption in the context of decades-long consumer understanding of MPG as the chief figure of merit for vehicle efficiency.
Video

Test Results of Plug-In Vehicles According to SAE Standard Testing Practices

2012-03-27
Over the past several years, new recommended practices for testing plug-in vehicles have been developed by SAE standards committees. At first only proprietary or prototype vehicles were available to validate new procedures. However, with the recent availability of Chevy Volt and Nissan Leaf, these test procedures were put to the test in Argonne�s National Laboratory�s dynamometer test facility. Procedures for the Volt were according to the SAE J1711 procedures. The Leaf was tested according to procedures still under development in the SAE J1634 task force. Identified were aspects of the tests that were successful and areas where more development is needed. As described in SAE J2841, the Volt results were analyzed using a �utility factor� to estimate in-use expectations of electric-only miles.
Journal Article

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods

2010-04-12
2010-01-1266
Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple “cold” start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts.
Journal Article

Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data

2014-04-01
2014-01-1425
This paper implements a coupled approach to integrate the internal nozzle flow and the ensuing fuel spray using a Volume-of-Fluid (VOF) method in the CONVERGE CFD software. A VOF method was used to model the internal nozzle two-phase flow with a cavitation description closed by the homogeneous relaxation model of Bilicki and Kestin [1]. An Eulerian single velocity field approach by Vallet et al. [2] was implemented for near-nozzle spray modeling. This Eulerian approach considers the liquid and gas phases as a complex mixture with a highly variable density to describe near nozzle dense sprays. The mean density is obtained from the Favreaveraged liquid mass fraction. The liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas.
Journal Article

Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment

2015-04-14
2015-01-0342
It is widely understood that cold ambient temperatures increase vehicle fuel consumption due to heat transfer losses, increased friction (increased viscosity lubricants), and enrichment strategies (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large set of real world drive cycle data and ambient conditions. This work leverages experimental dynamometer vehicle data collected under various drive cycles and ambient conditions to develop a simplified modeling framework for quantifying thermal effects on vehicle energy consumption. These models are applied over a wide array of real-world usage profiles and typical meteorological data to develop estimates of in-use fuel economy. The paper concludes with a discussion of how this integrated testing/modeling approach may be applied to quantify real-world, off-cycle fuel economy benefits of various technologies.
Technical Paper

Numerical Analysis of Fuel Impacts on Advanced Compression Ignition Strategies for Multi-Mode Internal Combustion Engines

2020-04-14
2020-01-1124
Multi-mode combustion strategies may provide a promising pathway to improve thermal efficiency in light-duty spark ignition (SI) engines by enabling switchable combustion modes, wherein an engine may operate under advanced compression ignition (ACI) at low load and spark-assisted ignition at high load. The extension from the SI mode to the ACI mode requires accurate control of intake charge conditions, e.g., pressure, temperature and equivalence ratio, in order to achieve stable combustion phasing and rapid mode-switches. This study presents results from computational fluid dynamics (CFD) analysis to gain insights into mixture charge formation and combustion dynamics pertaining to auto-ignition processes. The computational study begins with a discussion of thermal wall boundary condition that significantly impacts the combustion phasing.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Journal Article

Fuel Consumption and Cost Potential of Different Plug-In Hybrid Vehicle Architectures

2015-04-14
2015-01-1160
Plug-in Hybrid Electric Vehicles (PHEVs) have demonstrated the potential to provide significant reduction in fuel use across a wide range of dynamometer test driving cycles. Companies and research organizations are involved in numerous research activities related to PHEVs. One of the current unknowns is the impact of driving behavior and standard test procedure on the true benefits of PHEVs from a worldwide perspective. To address this issue, five different PHEV powertrain configurations (input split, parallel, series, series-output split and series-parallel), implemented on vehicles with different all-electric ranges (AERs), were analyzed on three different standard cycles (i.e., Urban Dynamometer Driving Schedule, Highway Fuel Economy Test, and New European Driving Cycle). Component sizes, manufacturing cost, and fuel consumption were analyzed for a midsize car in model year 2020 through the use of vehicle system simulations.
Journal Article

Prediction of the Nozzle Flow and Jet Characteristics at Start and End of Injection: Transient Behaviors

2015-09-01
2015-01-1850
This paper reports investigations on diesel jet transients, accounting for internal nozzle flow and needle motion. The calculations are performed with Large Eddy Simulation (LES) turbulence model by coupling the internal and external multiphase flows simultaneously. Short and multiple injection strategies are commonly used in internal combustion engines. Their features are significantly different from those generally found in steady state conditions, which have been extensively studied in the past, however, these conditions are seldom reached in modern engines. Recent researches have shown that residual gas can be ingested in the injector sac after the end-of-injection (EOI) and undesired dribbles can be produced. Moreover, a new injection event behaves differently at the start-of-injection (SOI) depending on the sac initial condition, and the initial spray development can be affected for the first few tens of μs.
Journal Article

Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles

2016-04-05
2016-01-0236
It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Journal Article

Novel Tabulated Combustion Model Approach for Lifted Spray Flames with Large Eddy Simulations

2016-10-17
2016-01-2194
In this work, a turbulent combustion model is developed for large eddy simulation (LES) using a novel flamelet tabulation technique based on the framework of the multi-flamelet representative interactive flamelet (RIF) model. The overall aim is to develop a detailed model with elaborate chemistry mechanisms, LES turbulence models and highly resolved grids leveraging the computational cost advantage of a tabulated model. A novel technique of implementing unsteady flamelet libraries by using the residence time instead of the progress variables is proposed. In this study, LES of n-dodecane spray flame is performed using the tabulated turbulent combustion model along with a dynamic structure subgrid model. A high-resolution mesh is employed with a cell size of 62.5 microns in the entire spray and combustion regions. This model is then validated against igniting n-dodecane sprays under diesel engine conditions.
Journal Article

Time-Resolved X-Ray Radiography of Spark Ignition Plasma

2016-04-05
2016-01-0640
Understanding the short-lived structure of the plasma that forms between the electrodes of a spark plug is crucial to the development of improved ignition models for SI engines. However, measuring the amount of energy deposited in the gas directly and non-intrusively is difficult, due to the short time scales and small length scales involved. The breakdown of the spark gap occurs at nanosecond time scales, followed by an arc phase lasting a few microseconds. Finally, a glow discharge phase occurs over several milliseconds. It is during the arc and glow discharge phases that most of the heat transfer from the plasma to the electrodes and combustion gases occurs. Light emission can be used to measure an average temperature, but micron spatial resolution is required to make localized measurements.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Journal Article

Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients

2016-04-05
2016-01-0870
This work involves modeling internal and near-nozzle flows of a gasoline direct injection (GDI) nozzle. The Engine Combustion Network (ECN) Spray G condition has been considered for these simulations using the nominal geometry of the Spray G injector. First, best practices for numerical simulation of the two-phase flow evolution inside and the near-nozzle regions of the Spray G injector are presented for the peak needle lift. The mass flow rate prediction for peak needle lift was in reasonable agreement with experimental data available in the ECN database. Liquid plume targeting angle and liquid penetration estimates showed promising agreement with experimental observations. The capability to assess the influence of different thermodynamic conditions on the two-phase flow nature was established by predicting non-flashing and flashing phenomena.
Technical Paper

Experimental Evaluation of Longitudinal Control for Automated Vehicles through Vehicle-in-the-Loop Testing

2020-04-14
2020-01-0714
Automated driving functionalities delivered through Advanced Driver Assistance System (ADAS) have been adopted more and more frequently in consumer vehicles. The development and implementation of such functionalities pose new challenges in safety and functional testing and the associated validations, due primarily to their high demands on facility and infrastructure. This paper presents a rather unique Vehicle-in-the-Loop (VIL) test setup and methodology compared those previously reported, by combining the advantages of the hardware-in-the-loop (HIL) and traditional chassis dynamometer test cell in place of on-road testing, with a multi-agent real-time simulator for the rest of test environment.
Journal Article

Test Procedure Development for “Blended Type” Plug-In Hybrid Vehicles

2008-04-14
2008-01-0457
Several plug-in hybrid electric vehicles (PHEVs) have recently been made available by conversion companies for laboratory testing. The viability of the technology must be evaluated by dynamometer benchmark testing, but because the technology is so new, existing and new test methods must first be investigated. Converted Gen 2 Toyota Prius vehicles from Hymotion, EnergyCS, and Hybrids Plus were tested at Argonne's dynamometer facility according to general testing concepts. These vehicles all share basic attributes - all are blended type PHEVs, all use Lithium battery technology, and all deplete charge in a similar fashion (although at different rates). In a time span of one year, lessons learned from one vehicle were carried over into the next test vehicle. A minimum test method was formulated that is well suited for all these vehicles. The method was validated with two vehicles of varying charge-depleting range.
Journal Article

Battery Charge Balance and Correction Issues in Hybrid Electric Vehicles for Individual Phases of Certification Dynamometer Driving Cycles as Used in EPA Fuel Economy Label Calculations

2012-04-16
2012-01-1006
This study undertakes an investigation of the effect of battery charge balance in hybrid electric vehicles (HEVs) on EPA fuel economy label values. EPA's updated method was fully implemented in 2011 and uses equations which weight the contributions of fuel consumption results from multiple dynamometer tests to synthesize city and highway estimates that reflect average U.S. driving patterns. For the US06 and UDDS cycles, the test results used in the computation come from individual phases within the overall certification driving cycles. This methodology causes additional complexities for hybrid vehicles, because although they are required to be charge-balanced over the course of a full drive cycle, they may have net charge or discharge within the individual phases. As a result, the fuel consumption value used in the label value calculation can be skewed.
Journal Article

Design of an On-Road PHEV Fuel Economy Testing Methodology with Built-In Utility Factor Distance Weighting

2012-04-16
2012-01-1194
As vehicle technology progresses to new levels of sophistication, so too, vehicle test methods must evolve. This is true for analytical testing in a laboratory and for on-road vehicle testing. Every year since 1993, the U.S. Department of Energy (DOE) and original equipment manufacturer (OEM) sponsors have organized a series of competitions featuring advanced hybrid electric vehicle (HEV) technology to develop and promote DOE goals in fuel savings and alternative fuel usage. The competition has evolved over many years and has included many alternative fuels feeding the prime mover (including hydrogen fuel cells). EcoCAR turned its focus to plug-in hybrid electric vehicles (PHEVs) and it was quickly realized that to keep using on-road testing methods to evaluate fuel and electricity consumption, a new method needed to be developed that would properly weight depleting operation with the sustaining operation, using the established Utility Factor (UF) method.
Journal Article

Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas Emissions: The Combined Potential of Hybrid Technology and Behavioral Adaptation

2013-04-08
2013-01-1282
When comparing the potential of advanced versus conventional powertrains, a traditional approach is to hold glider design constant and simulate “comparable performance” to a conventional vehicle (CV). However, manufacturers have developed hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), and all-electric vehicle (EV) powertrains in gliders designed to synergistically enhance fuel saving benefits of such powertrains by further reducing road load and engine output power (or continuous power for the EV) where no conventional powertrain option is provided. In the U.S. marketplace, there are now several examples of both hybrid and plug-in hybrid electric vehicles using gliders common to top selling CVs and a few using low load gliders to further reduce fuel consumption.
X