Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

A Novel Dissipative Acoustic Material

2021-08-31
2021-01-1128
Due to modern trends in the automotive industry, such as vehicle electrification, light-weighting, reduced NVH (Noise, Vibration and Harshness) packaging space, etc., it is desirable to have a low profile and light-weight acoustic material with multi-functionality. If one single layer of a thin acoustic material can provide comparable absorption and transmission loss to a multilayer treatment, it will benefit the industry by saving weight, packaging space and system cost. Acoustic absorption and sound transmission loss performance of a new dissipative material at reduced weight and thickness is introduced in this paper. The acoustic performance of the material was evaluated by using random incidence absorption and transmission loss as well as in-vehicle experiment. Further potential applications for this material have been identified using the Statistical Energy Analysis (SEA) method with panel leakage considered.
Journal Article

On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

2017-03-28
2017-01-0950
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications.
Journal Article

The Deleterious Effects of Organic Binder on Intumescent Mat Mount Material

2008-04-14
2008-01-0452
For decades, ceramic fiber mats have been used to mechanically support substrates in catalytic converters. Intumescent mats, those that expand with heat, are composed primarily of ceramic fibers, vermiculite, and organic binder. The binder is required for manufacturing, handling, and installation. Unfortunately, under cool operating conditions, its effects on mat performance are often negative. While residual binder is not an automatic precursor to premature failure, it can amplify the effects of other factors such as gap control and vibration. As the mat mount material is heated, sections can become soft and pliable. In the absence of sufficient heat for complete binder removal, regions of the mat may become rigid during the cooling cycle. This results in a decrease in mat resiliency. Several tests can be used to show the relationship between binder level and material performance. These tests typically characterize expansion properties and pressure performance.
Technical Paper

Development of plastic strain equalization method for a crash analysis

2000-06-12
2000-05-0198
For a crash analysis using FEM with respect to a structure that is composed of thin plates, we developed a new structure study method (plastic strain equalization method). This method defines the optimality criteria as in the linear analysis of a fully stressed design and indirectly finds an optimal solution. We assume that a structure with both a lightweight and high collapse load should have sufficient strength corresponding to impact loads in each area. This means that at any area the load value and the strength are balanced at a certain value. For the criteria that the plastic strain value is equal over the whole area, a solution can be found by repeating computations. The design variable is the thickness of shell elements and the computation is iterated until plastic strain values are almost equal. In this paper, a structure with both a lightweight and a high collapse load could be optimized by equalizing the plastic strain value.
Technical Paper

Comparison of Long Bar Test Method to Oberst Bar Test Method for Damping Material Evaluation

2017-06-05
2017-01-1851
Several methods for evaluating damping material performance are commonly used, such as Oberst beam test, power injection method and the long bar test. Among these test methods, the Oberst beam test method has been widely used in the automotive industry and elsewhere as a standard method, allowing for slight bar dimension differences. However, questions have arisen as to whether Oberst test results reflect real applications. Therefore, the long bar test method has been introduced and used in the aerospace industry for some time. In addition to the larger size bar in the long bar test, there are a few differences between Oberst (cantilever) and long bar test (center-driven) methods. In this paper, the differences between Oberst and long bar test methods were explored both experimentally and numerically using finite element analysis plus an analytical method. Furthermore, guidelines for a long bar test method are provided.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

Acoustic Performance Prediction of Micro-Perforated Panels Using Computational Fluid Dynamics and Finite Element Analysis

2013-05-13
2013-01-2000
In recent years, interest in microperforated panels (MPPs) has been growing in the automotive industry and elsewhere. Acoustic performance prediction is an important step toward understanding and designing MPPs. This paper outlines a start-to-finish procedure to predict the transfer impedance of a particular MPP based on its hole geometry and to further use this information in a simple plane wave application. A computational fluid dynamics (CFD) approach was used to calculate the impedance of the MPP and the results compared to impedance tube and flow resistance measurements. The transfer impedance results were then used to create a computationally efficient acoustic finite element (FE) model. The results of the acoustic FE model were also compared to impedance tube measurements.
Technical Paper

A Development of Statistical Human Back Contour Model for Backrest Comfort Evaluation

1993-03-01
930114
First, this paper describes a measurement of the human back-backrest interface contours and a reduction procedure of the measured contours to reconstruct the statistical back contours of American 50 and 95-percentile male. Second, the paper illustrates the difference of the back contour between the statistical male drivers and SAE 3-D Manikin. Finally, the advantage of using the back contour model in experiment is given. The AM 50 back contour model was used as a loader to obtain the backrest pressure distribution and proved an excellent tool for backrest comfort evaluation.
Technical Paper

Optimal Forming of Aluminum 2008-T4 Conical Cups Using Force Trajectory Control

1993-03-01
930286
In this paper we investigate the optimal forming of conical cups of AL 2008-T4 through the use of real-time process control. We consider a flat, frictional binder the force of which can be determined precisely through closed-loop control. Initially the force is held constant throughout the forming of the cup, and various levels of force are tested experimentally and with numerical simulation. Excellent agreement between experiment and simulation is observed. The effects of binder force on cup shape, thickness distribution, failure mode and cup failure height are investigated, and an “optimal” constant binder force is determined. For this optimal case, the corresponding punch force is recorded as a function of punch displacement and is used in subsequent closed-loop control experiments. In addition to the constant force test, a trial variable binder force test was performed to extend the failure height beyond that obtained using the “optimal” constant force level.
Technical Paper

Draw Bead Penetration as a Control Element of Material Flow

1993-03-01
930517
Draw beads are widely utilized as a mechanism for providing proper restraining force to a sheet in a forming operation. In this paper, numerical simulations using the nonlinear finite element method are conducted to model the process of drawing a sheet through various draw bead configurations to study the mechanics of draw bead restraint. By examing the sensitivity of the draw bead restraining force due to the change of the draw bead penetration, the work shows that the penetration has the potential to be a very good element for varying and controlling restraining force during the process. A closed-loop feedback control of draw bead penetration using a proportional-integral controller is achieved by the combination of the original finite element simulation and a special element which links penetration to a pre-defined restraining force trajectory.
Technical Paper

An Investigation of the Potential Human and Environmental Impacts Associated With Motor Vehicle Air Bag Restraint Systems

1979-02-01
790641
The Motor Vehicle Manufacturers are required under the provisions of Motor Vehicle Safety Standard 208 to provide passive restraint systems in their large 1982 model year passenger vehicles. Air bag restraint systems based upon either a hybrid or pyrotechnic design can provide the necessary restraining provisions required by MVSS 208. However, there are many questions which remain to be answered regarding the potential risks which these air bag systems may pose. The air bag life cycle, including intended use, abandonment, scrapyards, junk-yards, and metal melting operations, is evaluated to assess the various risks which air bag systems pose to humans, the biological environment, and the flora and fauna inhabiting these areas. These risks are estimated through the application of traditional risk analysis techniques, including failure mode and effect analysis and fault-tree analysis.
Technical Paper

Comparison of Aldehyde Methods

1982-02-01
820965
Three widely documented methods for the analysis of aliphatic aldehydes in air, i.e., chromotropic acid, 3-methyl-2-benzothiazolone hydrazone (MBTH) and 2, 4-dinitrophenyl hydrazone (DNPH), and a modified version of the MBTH method are frequently used for the analysis of aldehydes in diluted diesel exhaust. In order to assess their relative accuracy for analysis of aldehydes in such a matrix, a side-by-side comparison of the methods was conducted. The equivalent accuracy of the chromotropic acid, MBTH and DNPH methods for analysis of formaldehyde in a clean air matrix was confirmed and a negative bias in the MBTH method as a result of SO2 interference was documented. A comparison of the concentrations of formaldehyde and aliphatic aldehydes in diluted diesel exhaust measured by the four methods indicates that significant differences exist between several of them.
Technical Paper

Introduction of Functional Periodicity to Prevent Long-Term Failure Mechanism

2006-04-03
2006-01-1203
One of the goals of designing engineering systems is to maximize the system's reliability. A reliable system must satisfy its functional requirements without failure throughout its intended lifecycle. The typical means to achieve a desirable level of reliability is through preventive maintenance of a system; however, this involves cost. A more fundamental approach to the problem is to maximize the system's reliability by preventing failures from occurring. A key question is to find mechanisms (and the means to implement them into a system) that will prevent its system range from going out of the design range. Functional periodicity is a means to achieve this goal. Three examples are discussed to illustrate the concept. In the new electrical connector design, it is the geometric functional periodicity provided by the woven wire structure. In the case of integrated manufacturing systems, it is the periodicity in scheduling of the robot motion.
Technical Paper

Whirl Analysis of an Overhung Disk Shaft System Mounted on Non-rigid Bearings

2022-03-29
2022-01-0607
Eigenvalues of a simple rotating flexible disk-shaft system are obtained using different methods. The shaft is supported radially by non-rigid bearings, while the disk is situated at one end of the shaft. Eigenvalues from a finite element and a multi-body dynamic tool are compared against an established analytical formulation. The Campbell diagram based on natural frequencies obtained from the tools differ from the analytical values because of oversimplification in the analytical model. Later, detailed whirl analysis is performed using AVL Excite multi-body tool that includes understanding forward and reverse whirls in absolute and relative coordinate systems and their relationships. Responses to periodic force and base excitations at a constant rotational speed of the shaft are obtained and a modified Campbell diagram based on this is developed. Whirl of the center of the disk is plotted as an orbital or phase plot and its rotational direction noted.
Technical Paper

The Mechanism of Spur Gear Tooth Profile Deformation Due to Interference-Fit Assembly and the Resultant Effects on Transmission Error, Bending Stress, and Tip Diameter and Its Sensitivity to Gear Geometry

2022-03-29
2022-01-0608
Gear profile deviation is the difference in gear tooth profile from the ideal involute geometry. There are many causes that result in the deviation. Deflection under load, manufacturing, and thermal effects are some of the well-known causes that have been reported to cause deviation of the gear tooth profile. The profile deviation caused by gear tooth profile deformation due to interference-fit assembly has not been discussed previously. Engine timing gear trains, transmission gearboxes, and wind turbine gearboxes are known to use interference-fit to attach the gear to the rotating shaft. This paper discusses the interference-fit joint design and the mechanism of tooth profile deformation due to the interference-fit assembly in gear trains. A new analytical method to calculate the profile slope deviation change due to interference-assembly of parallel axis spur gears is presented.
Technical Paper

Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing

2018-04-03
2018-01-1260
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means for interrogating the condition of the filter itself.
Technical Paper

Modeling the Three Piece Oil Control Ring Dynamics and Oil Transport in Internal Combustion Engines

2021-04-06
2021-01-0345
Three-piece oil control rings (TPOCR) are widely used in the majority of modern gasoline engines and they are critical for lubricant regulation and friction reduction. Despite their omnipresence, the TPOCRs’ motion and sealing mechanisms are not well studied. With stricter emission standards, gasoline engines are required to maintain lower oil consumption limits, since particulate emissions are strongly correlated with lubricant oil emissions. This piqued our interest in building a numerical model coupling TPOCR dynamics and oil transport to explain the physical mechanisms. In this work, a 2D dynamics model of all three pieces of the ring is built as the main frame. Oil transport in different zones are coupled into the dynamics model. Specifically, two mass-conserved fluid sub-models predict the oil movement between rail liner interface and rail groove clearance to capture the potential oil leakage through TPOCR. The model is applied on a 2D laser induced fluorescence (2D-LIF) engine.
Technical Paper

Investigation of Shortcomings/Limitations of Industrial Standard 278 of the Verband der Automobilindustrie for Measuring Volatile Organic Compounds

2023-06-26
2023-01-5038
The Verband der Automobilindustrie (VDA) 278 is an industry method widely used to measure volatile organic compounds (VOCs). It is most commonly used in the automobile industry to measure and regulate VOC and FOG levels in automotive parts as a safety regulation. The current VDA 278 method has issues from poor accuracy, precision, and reproducibility. There is variability in data due to differences in sample type and handling as well as instrument model. There is little understanding on the reproducibility of measurements of different sample types analyzed on different makes of instruments using VDA 278 analysis. In this work, a round-robin study is performed on diverse sample types, using different makes of instruments in laboratories across the world. It uses improved method conditions developed internally, for better reproducibility, that reduce sources of error.
Technical Paper

Effect of Wet Liner Vibration on Ring-liner Interaction in Heavy-duty Engines

2023-09-29
2023-32-0140
Lubricating oil consumption (LOC) is a direct source of hydrocarbon and particulate emissions from internal combustion engines. LOC also inhibits the lifetime of exhaust aftertreatment system components, preventing their ability to effectively filter out other harmful emissions. Due to its influence on piston ring- bore conformability, bore distortion is arguably the most critical parameter for engine designers to consider in prevention of LOC. Bore distortion also has a significant influence on the contact forces between the piston ring and cylinder wall, which determine the wear rate of the ring and cylinder wall and can cause durability issues. Two drivers of bore distortion: thermal expansion and head bolt stresses, are routinely considered in conformability and contact analyses. Separately, bore distortion/vibration due to piston impact and combustion/cylinder pressures has been previously analyzed in wet liner engines for coolant cavitation and noise considerations.
X