Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Steering Column Slip Endurance Test & Rig Development

2018-04-03
2018-01-0125
In the emerging commercial vehicle sector, it is very essential to give a product to customer, which is very reliable and less prone to the failures to make the product successful in the market. In order to make it possible, the product is to be validated to replicate the exact field conditions, where it is going to be operated. Lab testing plays a vital role in reproducing the field conditions in order to reduce the lead time in overall product life cycle development process. This paper deals with the design and fabrication of the steering column slip endurance test rig. This rig is capable of generating wear on the steering column splines coating which predominantly leads to failure of steering column. The data acquired from Proving Ground (PG) was analyzed and block cycles were generated with help of data analyzing tools.
Technical Paper

Evaluation of Truck Driver Safety in Various Crash Scenarios

2013-01-09
2013-26-0029
Driver safety is one of the key considerations in truck design and development. Virtual simulation offers opportunities to reduce development time and the number of physical prototypes consumed for design verification and validation for safety parameters. Thus, the application of virtual simulations of crash has become an integral part of the vehicle development process. The continuously emerging scenarios involving challenging test requirements can only be tested by means of virtual simulation techniques. This paper presents simulations that are performed to verify various safety aspects to ensure crashworthiness of the truck cabin. The cabin structure was evaluated for various national/international safety regulations. The FE model and simulation methodology was validated through physical testing and correlated for frontal impact test and roof strength test as per AIS 029/ECE R29. Analysis performed to ensure compliance to upcoming regulation ECE R29 Revision 03 is also discussed.
Technical Paper

Structural Fatigue Strength Evaluation of Commercial Vehicle Structures by Calculating Damage Due to Road Load Inputs

2013-01-09
2013-26-0139
Evaluation of vehicle structural durability is one of the key requirements in design and development of today's automobiles. Computer simulations are used to estimate vehicle durability to save the cost and time required for building and testing the prototype vehicles. The objective of this work was to find the service life of automotive structures like passenger commercial vehicle (bus) and truck's cabin by calculating cumulative fatigue life for operation under actual road conditions. Stresses in the bus and cabin are derived by means of performing finite element analysis using inertia relief method. Multi body dynamics simulation software ADAMS was used to obtain the load history at the bus and cabin mount locations - using measured load data as input. Strain based fatigue life analysis was carried out in MSC-Fatigue using static stresses from Nastran and extracted force histories from ADAMS. The estimated fatigue life was compared with the physical test results.
Technical Paper

An Statistical Energy Analysis (SEA) based Methodology for Sound Package Optimization for Commercial Vehicles

2013-01-09
2013-26-0104
In recent years NVH has gained a lot of importance in the commercial vehicle industry as it contributes significantly towards user comfort and also towards the quality perception associated with a vehicle. The in-cabin noise of vehicles is critical towards the comfort and usability for the end user and the sound package installed on the vehicle plays a vital role in determining the levels associated with this attribute, especially the high frequency content. The paper discusses a methodology for optimizing the sound package for performance, cost and mass, for a truck. The approach uses a Statistical Energy Analysis (SEA) based optimization. A virtual SEA model is developed, which is correlated with actual test data. After establishing the correlation, an optimization study is carried out to identify the effectiveness of different materials and material combinations towards in-cabin noise.
Technical Paper

Reliable Measuring System for Fuel Consumption of Earth-Movers

2015-01-14
2015-26-0148
Fuel economy is an important customer requirement which determines the position of earth-movers such as backhoe loaders in the market. Earth-movers are heavy duty machines that are used for construction works. Currently fuel consumption in earth-movers is quantified as fuel consumed per unit time (Liters per hour). Similarly, conventional measure of productivity of the earth-movers is in terms of volume of soil trenched per hour. Measurements using the above scales showed wide variations in measured fuel consumption and productivity, For the same equipment between measurements Two equipment of same make at different trench locations and Against the competitor equipment This inconsistency and lack of a proper measuring system made logical decision making extremely difficult. This paper describes the step by step procedures involved in deriving the methodology for robust fuel consumption measurement of earth-mover vehicles.
X