Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Front Axle Kingpin Bush - Evaluation of Wear in Operating Conditions

2021-09-22
2021-26-0473
In automobiles, front axle assembly is a main load bearing member and houses steering linkages. Front axle assembly has two main parts namely axle beam and axle arm, interconnected by a kingpin. This kingpin allows the rotation of axle arm during steering events. To avoid metal to metal contact between axle arm and kingpin, bushes are housed on the top and bottom half of the axle arm & in axle beam. Due to radial load and steering rotation, as a weak member, bushes will wear out faster. This affects the proper functioning of steering mechanism. Hence, the bushes need to be evaluated prior to its implementation in vehicle. In general, bushes are evaluated using Pin-On-Disc test as a comparative study, but it does not simulate exact boundary conditions as in vehicle. Next option is vehicle level validation but leads to more testing time and cost. Hence, as an optimized solution, the same vehicle operating conditions can be replicated in component level testing.
Technical Paper

Test Methodology Development on Multi-Purpose Bracket for HCV Application

2021-09-22
2021-26-0467
In the modern automotive sector, durability and reliability are two terms of utmost importance and relevance. The ever improving standards and cut throat competition has led to customers expecting highly reliable products at low costs. Any product that fails within its useful life leads to customer dissatisfaction and affects the OEM’s reputation. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. Multipurpose bracket is one of the most important and critical aggregate in the vehicle assembly. It encompasses various mounting components such as FUPD bracket, steering mounting bracket, front spring front bracket, cab mount bracket, cab tilt cylinder mounting bracket, front cross member, footstep bracket and bumper. All these components experience various degrees of vibration and fatigue during its running period.
Technical Paper

Accelerated Combined Stress Testing of Automotive Head Lamp Relays

2017-03-28
2017-01-0275
As technology gets upgraded every day, automotive manufacturers are paying more attention towards delivering a highly reliable product which performs its intended function throughout its useful life (without any failure). To develop a reliable product, accelerated combined stress testing should be conducted in addition to the conventional design validation protocol for the product. It brings out most of the potential failure modes of the product, so that necessary actions can be taken for the reliability improvement. This paper discusses about the field failure simulation and reliability estimation of automotive headlamp relays using accelerated combined stress testing. To analyze various field failure modes, performance and tear down analysis were carried out on the field failure samples. Field data (i.e. electrical, thermal and vibration signals) were acquired to evaluate normal use conditions.
Technical Paper

Steering Column Slip Endurance Test & Rig Development

2018-04-03
2018-01-0125
In the emerging commercial vehicle sector, it is very essential to give a product to customer, which is very reliable and less prone to the failures to make the product successful in the market. In order to make it possible, the product is to be validated to replicate the exact field conditions, where it is going to be operated. Lab testing plays a vital role in reproducing the field conditions in order to reduce the lead time in overall product life cycle development process. This paper deals with the design and fabrication of the steering column slip endurance test rig. This rig is capable of generating wear on the steering column splines coating which predominantly leads to failure of steering column. The data acquired from Proving Ground (PG) was analyzed and block cycles were generated with help of data analyzing tools.
Technical Paper

Target Correlation and Allocation Using Reliability Metrics to Validate Design Effectiveness of Improved Sample

2018-04-03
2018-01-0790
All automotive components, systems and vehicles undergo stringent validation protocol standards. Nevertheless, there are certain factors which cannot be captured during validation phase and result in field failures. With multiple players prying for market share in the automotive industry, timely resolution of field failures can go a long way in retaining customer base. In such a scenario, when customer’s tolerance on field failures is very limited, failures need severe attention and must be captured as early as possible to cut down warranty expenses. This project aims at creating a methodology to simulate field failures and validate improved design. The reliability parameters such as β (Shape Factor), η (Scale factor), Reliability and life are estimated and the values are compared between field and lab conditions. Life estimated in field conditions (Failure data base) and lab are correlated using Reliability techniques and target is established for validating improved sample.
Technical Paper

Requirements of Load Bearing Elements of Commercial Vehicles

2013-01-09
2013-26-0060
There are no Indian and International standards on load bearing elements. There is a British Standard which specifies only the load requirements of Headboard, side walls and rear gate in case of sudden braking. This paper specifies in detail the load bearing elements and through Computer Aided Engineering (CAE) simulation, the percentage of load that can be borne by the load bearing elements under different types of load shifting has been determined.
Technical Paper

A Simplified Model of Air Suspension for Multi Body Simulation of the Commercial Passenger Vehicle

2013-01-09
2013-26-0157
Multi Body Dynamics (MBD) simulation software is used in product development cycle to reduce the lead time to market. These software have standard parametric templates for modeling metallic suspension systems, which can be quickly modified and used in full vehicle models for ride, handling analysis and the durability load predictions. Generally every Original Equipment Manufacturer (OEM) has unique air suspension arrangement and hence standard template is not available for air suspension modeling in commercial MBD software. Air suspension with self-leveling control mechanism is preferred over metallic suspension in the commercial passenger vehicle like bus for smooth ride comfort. Hence custom made templates for these systems need to be developed for use with MBD software. In this paper, a simplified model of air suspension is presented.
Technical Paper

An Integrated Test Facility for Suspension Dampers of Commercial Vehicle

2018-04-03
2018-01-1383
In the present scenario, delivering the right product at the right time is very crucial in automotive sector to grab the competitive advantage. In the development stage, validation process devours most of the product development time. This paper focuses on reducing the validation time for damper (shock absorber) variants which is a vital component in commercial vehicle suspension system. New test facility is designed for both performance test and endurance testing of six samples simultaneously. In addition, it provides force trend monitoring during the validation which increases the efficiency of test with an enhanced control system. This new facility is also designed to provide side loading capability for individual dampers in addition to the conventional axial loading. The key parameter during validation is control of damper seal temperature within the range of 70-90°C. A cooling circuit is designed to provide an efficient temperature control by re-circulating cold water.
Technical Paper

Determination of Climatic Boundary Conditions for Vehicular Real Driving Emission Tests

2019-04-02
2019-01-0758
Vehicular Emission testing is gaining importance over the past years in the wake of requirements for real driving emissions with implementation of RDE packages across Europe / USA and various developing countries. Extending the same concept for other countries poses slight challenges in terms of geographical and climatic conditions prevailing in the country, where the climatic conditions are differing from Europe / USA. It is a challenge to accept the same boundary conditions as in Europe, at the same time the challenge is to find a threshold number in a more scientific manner. This study concentrates on determination and recommendation of thresholds for ambient temperature and altitude. The basis for temperature threshold would be to determine the percentage of time the temperature exceeded beyond the threshold over year in the country. The basis for Altitude is considered based on the percentage of total length of roads beyond the threshold altitude limit.
Technical Paper

Reliable Measuring System for Fuel Consumption of Earth-Movers

2015-01-14
2015-26-0148
Fuel economy is an important customer requirement which determines the position of earth-movers such as backhoe loaders in the market. Earth-movers are heavy duty machines that are used for construction works. Currently fuel consumption in earth-movers is quantified as fuel consumed per unit time (Liters per hour). Similarly, conventional measure of productivity of the earth-movers is in terms of volume of soil trenched per hour. Measurements using the above scales showed wide variations in measured fuel consumption and productivity, For the same equipment between measurements Two equipment of same make at different trench locations and Against the competitor equipment This inconsistency and lack of a proper measuring system made logical decision making extremely difficult. This paper describes the step by step procedures involved in deriving the methodology for robust fuel consumption measurement of earth-mover vehicles.
Technical Paper

Failure Analysis and Multi Frequency Swept Sine Testing of Automotive Engine Oil Sump

2019-01-09
2019-26-0354
Automotive business is more focused towards delivering a highly durable and reliable product at an optimum cost. Anything falls short of customer expectation will ruin the manufacturer’s reputation. To exterminate this, all automotive components shall undergo stringent testing protocol during the design validation process. Nevertheless, there are certain factors in the field which cannot be captured during design validation. This paper aims at developing a validation methodology for engine oil sump by simulating field failure. In few of our vehicles, field failure was observed in engine oil sump near the drain plug location. Preliminary analysis was carried out to find the potential causes for failure. Based on the engine test bed results, multi frequency swept sine testing was carried out in laboratory. Field failure was simulated in the lab test and the root causes for failure were found out.
Journal Article

Accelerated Lab Test Methodology for Steering Gearbox Bracket Using Fatigue Damage and Reliability Correlation

2017-04-11
2017-01-9177
In the modern automotive sector, durability and reliability are the most common terms. Customers are expecting a highly reliable product but at low cost. Any product that fails within its useful life leads to customer dissatisfaction and affects the reputation of the OEM. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. This paper details on developing an accelerated lab test methodology for steering gearbox bracket using fatigue damage and reliability correlation by simulating field failure. Initially, potential failure causes for steering gearbox bracket were analyzed. Road load data was then acquired at proving ground and customer site to evaluate the cumulative fatigue damage on the steering gearbox bracket. To simulate the field failure, lab test facility was developed, reproducing similar boundary conditions as in vehicle.
X