Refine Your Search

Topic

Author

Search Results

Technical Paper

Front Axle Kingpin Bush - Evaluation of Wear in Operating Conditions

2021-09-22
2021-26-0473
In automobiles, front axle assembly is a main load bearing member and houses steering linkages. Front axle assembly has two main parts namely axle beam and axle arm, interconnected by a kingpin. This kingpin allows the rotation of axle arm during steering events. To avoid metal to metal contact between axle arm and kingpin, bushes are housed on the top and bottom half of the axle arm & in axle beam. Due to radial load and steering rotation, as a weak member, bushes will wear out faster. This affects the proper functioning of steering mechanism. Hence, the bushes need to be evaluated prior to its implementation in vehicle. In general, bushes are evaluated using Pin-On-Disc test as a comparative study, but it does not simulate exact boundary conditions as in vehicle. Next option is vehicle level validation but leads to more testing time and cost. Hence, as an optimized solution, the same vehicle operating conditions can be replicated in component level testing.
Technical Paper

Manufacturing Execution System for Process Improvement

2009-10-06
2009-01-2855
In an era of global manufacturing and reduced costs, it is imperative that the manufacturing floor is visible to top management in a boardroom to enable them to make key decisions. Manufacturing Execution System (MES) is a method of connecting the shop floor to the top floor covering the complete gamut of activities from production sequence to finished goods. It aims to reduce the delay in transmitting production related data by linking the Production environment, Quality management, IT systems and Delivery. At Ashok Leyland’s Commercial Vehicle manufacturing facility in Ennore, India, an engine and axle components machine shop have been networked and data pertaining to production of Cylinder Block, Cylinder Head, Camshaft, Crankshaft, Axle Arm and Axle Beam components are accessible from anywhere in the company irrespective of location.
Technical Paper

Accelerated Combined Stress Testing of Automotive Head Lamp Relays

2017-03-28
2017-01-0275
As technology gets upgraded every day, automotive manufacturers are paying more attention towards delivering a highly reliable product which performs its intended function throughout its useful life (without any failure). To develop a reliable product, accelerated combined stress testing should be conducted in addition to the conventional design validation protocol for the product. It brings out most of the potential failure modes of the product, so that necessary actions can be taken for the reliability improvement. This paper discusses about the field failure simulation and reliability estimation of automotive headlamp relays using accelerated combined stress testing. To analyze various field failure modes, performance and tear down analysis were carried out on the field failure samples. Field data (i.e. electrical, thermal and vibration signals) were acquired to evaluate normal use conditions.
Technical Paper

Noise Reduction at Source for a Vehicle Using Free Layer Damper

2011-01-19
2011-26-0067
Traditional methods of noise control in most application are by using absorption and barrier techniques. These involve brackets & clamps for assembly, carrier material to hold absorbing materials. Usage of absorbing materials which could be high, as this is based on noise control technique by allowing source to produce noise and hence the cost is also higher. Based on the survey, several demerits have been studied in using absorption and barrier noise control techniques in the field of an automobile application. This paper deals with the noise control by using the application of free layer damping technique thereby overcoming the demerits happening in using former techniques, helping better control of noise in the environment and solutions which are more durable. The methodology followed here before going for the FLD application is identification of noise radiating components which needs to be damped in a system or subsystem.
Technical Paper

Steering Column Slip Endurance Test & Rig Development

2018-04-03
2018-01-0125
In the emerging commercial vehicle sector, it is very essential to give a product to customer, which is very reliable and less prone to the failures to make the product successful in the market. In order to make it possible, the product is to be validated to replicate the exact field conditions, where it is going to be operated. Lab testing plays a vital role in reproducing the field conditions in order to reduce the lead time in overall product life cycle development process. This paper deals with the design and fabrication of the steering column slip endurance test rig. This rig is capable of generating wear on the steering column splines coating which predominantly leads to failure of steering column. The data acquired from Proving Ground (PG) was analyzed and block cycles were generated with help of data analyzing tools.
Technical Paper

Target Correlation and Allocation Using Reliability Metrics to Validate Design Effectiveness of Improved Sample

2018-04-03
2018-01-0790
All automotive components, systems and vehicles undergo stringent validation protocol standards. Nevertheless, there are certain factors which cannot be captured during validation phase and result in field failures. With multiple players prying for market share in the automotive industry, timely resolution of field failures can go a long way in retaining customer base. In such a scenario, when customer’s tolerance on field failures is very limited, failures need severe attention and must be captured as early as possible to cut down warranty expenses. This project aims at creating a methodology to simulate field failures and validate improved design. The reliability parameters such as β (Shape Factor), η (Scale factor), Reliability and life are estimated and the values are compared between field and lab conditions. Life estimated in field conditions (Failure data base) and lab are correlated using Reliability techniques and target is established for validating improved sample.
Technical Paper

Evaluation of Truck Driver Safety in Various Crash Scenarios

2013-01-09
2013-26-0029
Driver safety is one of the key considerations in truck design and development. Virtual simulation offers opportunities to reduce development time and the number of physical prototypes consumed for design verification and validation for safety parameters. Thus, the application of virtual simulations of crash has become an integral part of the vehicle development process. The continuously emerging scenarios involving challenging test requirements can only be tested by means of virtual simulation techniques. This paper presents simulations that are performed to verify various safety aspects to ensure crashworthiness of the truck cabin. The cabin structure was evaluated for various national/international safety regulations. The FE model and simulation methodology was validated through physical testing and correlated for frontal impact test and roof strength test as per AIS 029/ECE R29. Analysis performed to ensure compliance to upcoming regulation ECE R29 Revision 03 is also discussed.
Technical Paper

Design and Weight Optimization of an Automobile Link - A Case Study

2013-01-09
2013-26-0078
A case study was conducted on the design, optimization and material replacement for an automobile suspension link. The link is part of a four bar mechanism. The mechanism was developed in Adams/Car® and multibody simulation was carried out on it. The joint forces arrived from the simulation were exported for finite element analysis of the components in OptiStruct®. Finally, topology and shape optimization was conducted to reduce the weight of the original component. A feasibility study was also carried out to replace the fabricated steel link with a heat treated cast iron link. Heat treated cast iron being lighter than steel, ensures reduction in weight without compromising on strength. The experiment resulted in a feasible optimized shape which was 32% lighter than the current shape of the link being used in the vehicle, while keeping the stresses and displacements within limits.
Technical Paper

Structural Fatigue Strength Evaluation of Commercial Vehicle Structures by Calculating Damage Due to Road Load Inputs

2013-01-09
2013-26-0139
Evaluation of vehicle structural durability is one of the key requirements in design and development of today's automobiles. Computer simulations are used to estimate vehicle durability to save the cost and time required for building and testing the prototype vehicles. The objective of this work was to find the service life of automotive structures like passenger commercial vehicle (bus) and truck's cabin by calculating cumulative fatigue life for operation under actual road conditions. Stresses in the bus and cabin are derived by means of performing finite element analysis using inertia relief method. Multi body dynamics simulation software ADAMS was used to obtain the load history at the bus and cabin mount locations - using measured load data as input. Strain based fatigue life analysis was carried out in MSC-Fatigue using static stresses from Nastran and extracted force histories from ADAMS. The estimated fatigue life was compared with the physical test results.
Technical Paper

Development of a Specific Durability Test Cycle for a Commercial Vehicle Based on Real Customer Usage

2013-01-09
2013-26-0137
Every class of commercial vehicle has an entirely different usage pattern based on customer application and needs. To perform accurate durability testing, these prototypes should run on real customer usage locations and loading conditions for the target life. However, this is time consuming and not practical, hence resulting in Proving Ground (PG) testing. It is also known that a standard PG durability cycle cannot be valid for every class of vehicle and every application. So a statistical approach was followed to develop an accelerated durability test cycle based on in-house PG test surfaces in order to match the real customer usage to the durability target life. This paper summarizes the methodology to develop Durability Validation test cycles for commercial vehicle based on the work carried out on a heavy duty tipper and an intermediate commercial vehicle.
Technical Paper

An Statistical Energy Analysis (SEA) based Methodology for Sound Package Optimization for Commercial Vehicles

2013-01-09
2013-26-0104
In recent years NVH has gained a lot of importance in the commercial vehicle industry as it contributes significantly towards user comfort and also towards the quality perception associated with a vehicle. The in-cabin noise of vehicles is critical towards the comfort and usability for the end user and the sound package installed on the vehicle plays a vital role in determining the levels associated with this attribute, especially the high frequency content. The paper discusses a methodology for optimizing the sound package for performance, cost and mass, for a truck. The approach uses a Statistical Energy Analysis (SEA) based optimization. A virtual SEA model is developed, which is correlated with actual test data. After establishing the correlation, an optimization study is carried out to identify the effectiveness of different materials and material combinations towards in-cabin noise.
Technical Paper

Cab Suspension Optimization Using Matlab

2013-01-09
2013-26-0147
Driver's ride comfort is an important characteristic in heavy commercial vehicle cab design. Optimizing the ride behavior for different cab variants and vehicle applications is a challenge for cab design and development engineers. Suspension parameter tuning with physical test is time consuming and costly. Therefore, a lumped parameter quarter car model of suspended cab is developed in MATLAB® tool SimScape which includes cab mass, springs and dampers for predicting ride behavior as per ISO 2631. The study is done for a 25 t rigid truck. The input to the system is displacement at axles and the output is acceleration measured at cab and chassis level. This output is correlated with test data obtained from physical measurements using Power Spectral Density (PSD) curves, bode plots and level cross count. This proved that simple lumped parameter models which use very few input parameters can be effectively employed in analysis of cab ride in initial design phases.
Technical Paper

Durability Analysis of a Bus by Virtual Test Model (VTM)

2013-09-24
2013-01-2378
In this work, durability of the bus structure is evaluated with a Virtual Test Model (VTM).Full vehicle Multi Body Dynamics (MBD) model of the bus is built, with inclusion of flexibility of the bus structure to capture structural modes. Component mode synthesis method is used for creation of flexible model for use in MBD. Load extraction is done by performing MBD analysis with measured wheel inputs. Modal Superposition Method (MSM) is employed in FE along with these extracted loads for calculation of modal transient dynamic stress response of the structure. e-N based fatigue life is estimated. The estimated fatigue life from the modal superposition method show good correlation with the physical test results done in 6-poster test rig.
Technical Paper

Design and Development of Bimetal Brake Drum to Improve Heat Dissipation and Weight Reduction

2014-09-30
2014-01-2284
Automotive component light weighing is one of the major goals for original equipment manufacturers (OEM's) globally. Significant advances are being made in developing light-weight high performance components. In order to achieve weight savings in vehicles, the OEM's and component suppliers are increasingly using ultra-high-strength steel, aluminum, magnesium, plastics and composites. One way is to develop a light weight high performance component through multi material concept. In this present study, a bimetal brake drum of inner ring cast iron and outer shell of aluminum has been made in two different design configurations. In two different designs, 40 and 26% weight saving has been achieved as compared to conventional gray cast iron brake drum. The component level performance has been evaluated by dynamometer test. The heat dissipation and wear behavior has been analyzed. In both designs, the wear performance of the bimetal brake drum was similar to the gray cast iron material.
Technical Paper

Cost effective and Sustainable Alternate Material for Air Brake Tubings (ABT) in Commercial Vehicles

2014-09-30
2014-01-2409
The automotive industry is constantly looking for new alternate material and cost is one of the major driving factors for selecting the right material. ABT is a safety critical part and care has to be taken while selecting the appropriate material. Polyamide (PA12) [1] is the commonly available material which is currently used for ABT applications. Availability and material cost is always a major concern for commercial vehicle industries. This paper presents the development of ABT with an alternative material which has superior heat resistance. Thermoplastic Elastomer Ether Ester Block Copolymer (TEEE) [3] materials were tried in place Polyamide 12 for many good reasons. The newly employed material has better elastic memory and improved resistance to battery acid, paints and solvents. It doesn't require plasticizer for extrusion process because of which it has got excellent long term flexibility and superior kink resistance over a period of time.
Technical Paper

Methodology Development for Torsional Vibration Measurement and Processing in Powertrains

2015-06-15
2015-01-2278
Torsional vibration is a characteristic phenomenon of automotive powertrains. It can have an adverse impact on powertrain related noise as well as the durability of transmission and drivetrain components. Hence minimizing torsional vibration levels associated with powertrains has become important. In this context, accurate measurement and representation of angular acceleration is of paramount importance. A methodology was developed for in-house vehicle level torsional vibration measurement, analysis and representation of results. The evaluation of torsional vibration has two major aspects. First, the acquisition of raw rotational data and secondly, the processing of acquired data to arrive at usable information from which inferences and interpretations can be made about the behavior of the rotating element. This paper describes the development process followed for establishing a torsional vibration evaluation methodology.
Technical Paper

Reliable Measuring System for Fuel Consumption of Earth-Movers

2015-01-14
2015-26-0148
Fuel economy is an important customer requirement which determines the position of earth-movers such as backhoe loaders in the market. Earth-movers are heavy duty machines that are used for construction works. Currently fuel consumption in earth-movers is quantified as fuel consumed per unit time (Liters per hour). Similarly, conventional measure of productivity of the earth-movers is in terms of volume of soil trenched per hour. Measurements using the above scales showed wide variations in measured fuel consumption and productivity, For the same equipment between measurements Two equipment of same make at different trench locations and Against the competitor equipment This inconsistency and lack of a proper measuring system made logical decision making extremely difficult. This paper describes the step by step procedures involved in deriving the methodology for robust fuel consumption measurement of earth-mover vehicles.
Technical Paper

Failure Analysis and Multi Frequency Swept Sine Testing of Automotive Engine Oil Sump

2019-01-09
2019-26-0354
Automotive business is more focused towards delivering a highly durable and reliable product at an optimum cost. Anything falls short of customer expectation will ruin the manufacturer’s reputation. To exterminate this, all automotive components shall undergo stringent testing protocol during the design validation process. Nevertheless, there are certain factors in the field which cannot be captured during design validation. This paper aims at developing a validation methodology for engine oil sump by simulating field failure. In few of our vehicles, field failure was observed in engine oil sump near the drain plug location. Preliminary analysis was carried out to find the potential causes for failure. Based on the engine test bed results, multi frequency swept sine testing was carried out in laboratory. Field failure was simulated in the lab test and the root causes for failure were found out.
Technical Paper

A Novel Method for Urea Concentration Deterioration Detection in BSVI Heavy Duty Engine

2024-01-16
2024-26-0154
Diesel Exhaust Fluid (DEF) concentration monitoring is done to detect the concentration at which the emission thresholds are exceeded in BSVI engines [1]. This paper introduces a novel method to model the fault monitoring system with enable conditions designed to detect deterioration in DEF concentration, while reducing misdetection. This eliminates the need for dedicated sensor, reduces complexity, cost, and potential sensor-related failure modes. Traditionally, Diesel Exhaust Fluid quality sensors have been employed to measure the absolute concentration of Diesel Exhaust Fluid in the aqueous solution of urea [2]. This information is used to detect usage of poor quality DEF which results in increase in NOx emission beyond legal limits.
Technical Paper

Prognosis of Engine Failure Based on Modelling by Using Live Parameter Data from Vehicle

2024-01-16
2024-26-0266
In the commercial vehicle business, vehicle availability is a pivotal factor for the profitability of the customer. Nonetheless, the intricate nature of the technologies embedded in modern day engines and exhaust after-treatment systems coupled with the variability of the duty cycles of end applications of the vehicles imposes added challenges on the vehicle's sustained performance and reliability. In this context, the ability to predict potential failures through tools like telematics and real-time data analytics presents a significant opportunity for original equipment manufacturers (OEMs) to deliver distinctive value to their customers.
X